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1 IntrodutionThe objetive of this paper is to desribe the distintion between synhrony and asyn-hrony in distributed systems in novel and detailed ways.Naively, synhrony between two events in a distributed system means that both eventshappen �at the same time�. In real-world systems however this onept is ill-de�ned as thespeed of light introdues some inherent amount of asynhrony everywhere in the systemand whether two events happen at the same time depends on the observer. Nonethe-less two events an be onsidered synhronous when �nothing of importane ould havehappened between them.�Consider for example two onurrently running proesses A and B whih wish to exhangeinformation by sending some kind of message. The event of A sending the message andthe event of B reeiving it an now either be synhronous or asynhronous. If the twoevents happen synhronously, no further omputation an happen anywhere in the systemwhile the message travels, whih in partiular means that B is indeed ready to reeive themessage when A sends it. If however the two events are asynhronous, B might deide,after A sent the message, not to ommuniate and instead do something else. Thus it isnot guaranteed that B will ever reeive the message as intended by A.In pratie, to get a system in whih synhrony between events is meaningful loks areused, as seen in many omputer hips. However the larger the part of the system, whih issynhronized using the same lok, the lower the performane will be. Thus splitting thesystem in many asynhronous parts will improve performane, sometimes onsiderably.To help in this splitting, we want to answer the question whih events in a system areasynhronous, that is whether they our synhronously or not with other events is irrel-evant.Muh has already been written about related questions during the last deades. Usingvariations of CSP there are [5℄, [6℄ and [7℄, Petri nets have been overed in [10℄, loallysynhronous systems in general by [2℄ and reently asynhronous π-alulus has beenemployed by [9℄, [16℄ and [15℄.Impossibility results for enoding synhrony in asynhronous systems have been obtainedin some of these papers while other ones ahieved onrete enodings for the same problemusing other onstraints.More hardware oriented results exist as well, as the problem of how to implement aspei�ed behaviour using the most performant ommuniation possible frequently oursduring hip design. See [12℄ for some examples. 1



1 Introdution
. . .

a b

⇒

. . .ττ

a bFigure 1.1: Transformation to the symmetrially asynhronous implementationAn overview and a detailed omparison between our results and the literature is made inSetion 6.To study the problem in a basi model independent from spei� language onstruts, wehave hosen Petri nets as our model of omputation.In Petri nets, only very low-level primitives are available and the di�erenes betweensynhrony and asynhrony are hene more obvious. As do many other formal models,Petri nets have, despite their rather small set of primitives, synhrony already built in:Whenever a transition �res, the tokens of all preplaes are removed atomially, and noother transition an use them. This beomes espeially signi�ant in the ase of on�it,where multiple transitions share the same preplae. To disallow this form of synhronyand get an �asynhronous� Petri net, the reality of physial proesses an be mimiked inthe form of silent transitions whih pretend that removing tokens is not an instantaneousation. Thus other events an our even while one transition is in the proess of �ring.We all the net with the newly introdued transitions an �implementation�, as it repre-sents a possible real-world implementation of the original net. In this paper we introduethree di�erent possible asynhronous implementations, namely the �fully symmetriallyasynhronous�, the �symmetrially asynhronous� and the �asymmetrially asynhronous�implementation, whih di�er in how muh additional struture is allowed between theinvisible transitions to manage the removal of tokens. These di�erent implementationsrepresent di�erent grades of asynhrony, thereby enabling us to desribe whih ommuni-ation strutures an still be implemented at whih grade of asynhrony.An example of suh an asynhronous implementation of a net an be seen in Figure 1.1.It an be seen as a representation of two proesses (one on eah side of the net) whihommuniate synhronously by exeuting the transition b together. Note that after in theimplementation the sender an no longer be sure whether the reeiver will ever be willingto proess the message, whih was not the ase before.The new system an still perform the same set of ations, but an also deadlok. These twobehaviours seem intuitively di�erent. To formalize this intuition of di�erene, equivalenerelations are used, whih de�ne when exatly two systems are �the same�.A quite omprehensive overview over existing equivalene relations for reative systemsis given by [19℄, [20℄ and [21℄. Suh equivalene relations an be lassi�ed along di�erent2



dimensions, two of the most prominent being the sensitivity to the deision struture be-tween alternative behaviours of a system and the sensitivity to ausality between di�erentations. Along the �rst dimension, equivalenes whih essentially disregard the deisionstruture are alled linear time equivalenes whereas ones whih respet it (in more orless detail) are alled branhing time equivalenes.Returning to our original problem, we an now haraterise lasses of Petri nets by on-sidering whether they are equivalent to their implementation. This haraterisation hastwo parameters we an hoose: By whih equivalene relation to ompare the behaviourand how exatly to perform the implementation, i.e. where to insert new transitions andwhih strutures to allow between the them. Choosing di�erent sets of parameters willnot only give new insight into the di�erene between synhrony and asynhrony but willalso produe a lassi�ation of equivalene relations with respet to their ability to disernthe two.We will start our searh for useful equivalene relations at the oarsest end of the spetrum,namely trae equivalene, omparing just the sequenes of ations performed. It will turnout however, that neither trae equivalene nor ompleted trae equivalene is suited toour needs.We �nally �nd a useful �linear time� equivalene by omparing the pomsets of maximalproesses of a net. This equivalene respets ausality and parallelism and enables us todetet loal deadloks in spite of in�nite onurrent ativity. Sine parallelism is respetedwe an argue that the implementation will be �as e�ient� as the original net.For branhing time semantis, we use failures equivalene whih is one of the most usedequivalenes.It turns out that our semantially haraterised net lasses, indued by the various im-plementations and equivalene relations, are related to well known strutural net lasses.Symmetrially asynhronous nets relate to free-hoie and extended free hoie nets, whileasymmetrially asynhronous nets relate to simple nets. The exat relations naturally de-pend on the hosen equivalene relation. This result implies that free hoie and simplenets an be easily distributed. Our lasses are larger than the strutural ones however, asdistributability depends on onrete behaviour and not stati struture.In Setion 2, we proeed by introduing some basi notions neessary for the subsequentexamination of net lasses. Afterwards Setion 3 desribes the e�ets of the fully sym-metrially asynhronous implementation, �rst by proving some basi lemmas about theimplementations behaviour then by giving a more strutural haraterisation of one ofthe resulting net lasses. Setion 4 then repeats those steps for the symmetrially asyn-hronous implementation. Additionally relations to various strutural net lasses aregiven. In Setion 5 those two steps are also done for the asymmetrially asynhronousimplementation. Finally an analysis of how the results of related work are onneted withours is given in the onlusions in Setion 6.
3



2 Basi NotionsWe onsider here 1-safe net systems, i.e. plaes never arry more than one token and atransition an �re even if pre- and postset interset. To represent unobservable behaviour,whih we use to model asynhrony, the set of transitions is partitioned into observableand unobservable ones.De�nition 2.1A net with silent transitions is de�ned as N = (S, O, U, F, M0) where� S is a set (of plaes),� O is a set (of observable transitions),� U is a set (of unobservable transitions),� F ⊆ (S × T ∪ T × S) (the �ow relation) with T = O ∪ U (transitions) and� M0 ⊆ S (the initial marking).In this paper we only onsider �nite nets, i.e. S, O, U are all �nite.We denote the preset and postset of a net element x by •x := {y | (y, x) ∈ F} andby x• := {y | (x, y) ∈ F} respetively. Where neessary we extend funtions to setselement-wise. Furthermore the transitive losure of the �ow relation is denoted F+.The semantis of suh a Petri net an be desribed using the �token game�: Wheneverall preplaes of a transition hold a token (i.e. •x ⊆ M) that transition an �re, therebyremoving all those tokens and generating new ones on its post-plaes.De�nition 2.2 Let N = (S, O, U, F, M0) be a net. Let M1, M2 ⊆ S.
G ⊆ (O ∪ U), G 6= ∅, is alled a step from M1 to M2, M1[G〉NM2, i�� all transitions ontained in G are enabled, i.e.

∀t ∈ G. •t ⊆ M1 ∧ (M1 \
•t) ∩ t• = ∅ ,� all transitions of G are independent, that is not on�iting:

∀t, u ∈ G, t 6= u. •t ∩ •u = ∅ ∧ t• ∩ u• = ∅ ,� in M2 all tokens have been removed from the preonditions and new tokens havebeen inserted at the postonditions:
M2 =

(

M1 \
⋃

t∈G

•t

)

∪
⋃

t∈G

t• .
4



We omit the subsript N if lear from ontext. To make proofs about ontat freenesseasier in notation, we introdue a notation for a possibly not ontat-free step andwrite M1[G)M2 i� ∀t ∈ G. •t ⊆ M1 and the seond and third onditions from abovehold.To simplify statements about possible behaviours of a net, we introdue some abbrevia-tions.De�nition 2.3For a net N = (S, O, U, F, M0), we de�ne three relations:� −→N ⊆ P(S) ×P(O) × P(S) as M1
G

−→N M2 ⇔ G ⊆ O ∧ M1[G〉NM2� τ
−→N ⊆ P(S) ×P(S) as M1

τ
−→N M2 ⇔ ∃t ∈ U. M1[{t}〉NM2� =⇒N ⊆ P(S) × O∗ × P(S) as M1

σ
=⇒N M2 ⇔ ∃n ≥ 0. σ = t1t2 · · · tn ⊆ O∗ ∧

M1
τ

−→
∗

N

{t1}
−→N

τ
−→

∗

N

{t2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N

{tn}
−→N

τ
−→

∗

N M2We write M1
G

−→ for ∃M2. M1
G

−→ M2, M1 X
G

−→ for ∄M2. M1
G

−→ M2 and similar forthe other two relations. We write M1 X−→ for M1 X
τ

−→ ∧∀G ⊆ O. M1 X
G

−→.A marking M1 is said to be reahable i� there exists a σ ∈ O∗ suh that M0
σ

=⇒ M1.The set of all reahable markings is denoted by [M0〉.This paper only onsiders ontat-free nets where in every reahable marking M1 ∈ [M0〉for all t ∈ O ∪ U with •t ⊆ M1

(M1 \
•t) ∩ t• = ∅ .De�nition 2.4A tuple N = (S, O, U, F, M0) is an ourrene net i�� all onditions of De�nition 2.1 hold,� ∀x, y ∈ S ∪ O ∪ U. (x, y) ∈ F+ ⇒ (y, x) /∈ F+,� ∀s ∈ S. |•s| ≤ 1 ∧ |s•| ≤ 1 and� M0 = {s | s ∈ S, •s = ∅}.A plae s ∈ S in an ourrene net is said to be maximal i� s• = ∅. We write N◦ forthe set of all maximal plaes of an ourrene net N . Similarly we write ◦N for the setof minimal plaes de�ned as ◦N := {s | s ∈ S, •s = ∅}. Note that we do not enfore�niteness for ourrene nets.De�nition 2.5A slie of a net N = (S, O, U, F, M0) is a maximal set C ⊆ S suh that

∀x, y ∈ C. (x, y) /∈ F+.De�nition 2.6 Let N = (S, O, U, F, M0) be a net and let N ′ = (S ′, O′, U ′, F ′, M ′
0) bean ourrene net.A mapping f : (S ′ ∪ O′ ∪ U ′) → (S ∪ O ∪ U) is a proess of N i� 5



2 Basi Notions
N :

a b c

SI(N) :

τ τ

a b cFigure 2.1: A net without ompleted traes� f(S ′) ⊆ S ∧ f(O′) ⊆ O ∧ f(U ′) ⊆ U ,� f(M ′
0) = M0,� for every slie C of N ′, ∀x, y ∈ C. f(x) = f(y) ⇒ x = y (f is injetive over allslies) and� ∀t′ ∈ O′ ∪ U ′. f(•t′) = •f(t′) ∧ f(t′•) = f(t′)•.De�nition 2.7A proess f from an ourrene net N ′ to a net N is said to bemaximal i� f(N ′◦) X−→N .The set of all maximal proesses of a net N is denoted by MP (N).To desribe whih nets are �asynhronous�, we wish to ompare their behaviour to thatof their implementations using equivalene relations. The simplest useful equivaleneavailable is trae equivalene. This equivalene delares two nets N = (S, O, U, F, M0) and

N ′ = (S ′, O′, U ′, F ′, M ′
0) to be equivalent i� every trae of either net is always also possiblein the other, i.e. ∀σ. (M0

σ
=⇒N) ⇔ (M ′

0
σ

=⇒N ′). However we will �nd (in Lemma 4.4)that trae equivalene will always treat original and implementation as equivalent and wewould thus be unable to disern synhronous and asynhronous nets.The di�erene in behaviour between a net and its implementation will always be in the ex-istene of deadloks as in the example of Figure 1.1. To detet deadloks, ompleted traeequivalene is usually used. This equivalene additionally ompares whether a trae wasomplete, i.e. whether no further transition ould �re after the net produed the trae �or in formal term, whether additionally ∀σ. (M0
σ

=⇒N M1∧M1 X
τ

−→N ) ⇔ (M ′
0

σ
=⇒N ′ M1∧

M1 X
τ

−→N ′). However the example in Figure 2.1 should intuitively not be asynhronousas one omponent ould deadlok in the implementation whih nonetheless has the sameompleted traes as the original net, i.e. none. So ompleted trae equivalene won'tprovide the distintion we want either. We need some notion of justie, whih forestransitions to �re ultimately if ontinuously enabled. As noted in [18℄, justie in lineartime is best desribed using ausality respeting equivalenes.Thus we will onsider two nets equivalent if the sets of visible pomsets obtained fromtheir respetive maximal proesses are equal. The resulting equivalene relation respetsausality and parallelism and yields a just semantis.6



De�nition 2.8A labelled partial order is a struture (V, T,≤, l) where� V is a set (of verties),� T is a set (of labels),� ≤ ⊆ V × V is a partial order relation and� l : V → T (the labelling funtion).Two labelled partial orders o = (V, T,≤, l) and o′ = (V ′, T,≤′, l′) are isomorphi,
o ≈ o′, i� there exist a bijetion ϕ : V → V ′ suh that� ∀v ∈ V. l(v) = l′(ϕ(v)) and� ∀u, v ∈ V. u ≤ v ⇔ ϕ(u) ≤′ ϕ(v).De�nition 2.9 Let o = (V, T,≤, l) be a partial order.The pomset of o is its isomorphism lass [o] := {o′ | o ≈ o′}.By hiding the unobservable transitions of a proess, we gain a pomset whih desribesausality relations of all partiipating visible transitions.De�nition 2.10 Let f : (S ′, O′, U ′, F ′, M ′

0) → (S, O, U, F, M0) be a proess.The visible pomset of f is the pomset V P (f) := [(O′, O, F ′∗, f ∩ (O′ × O))] where F ′∗is the transitive and re�exive losure of the �ow relation F ′.MVP(N) := {V P (f) | f ∈ MP (N)} is the set of pomsets of all maximal proesses of
N .De�nition 2.11Two nets N and N ′ are ompleted pomset trae equivalent, N ≃CPT N ′, if and only ifMVP(N) = MVP(N ′).To onsider branhing time semantis, we use failures equivalene, whih, while quite aoarse branhing-time equivalene, is su�ient for our means. Sine our onstrution doesnot introdue new ausalities nor removes parallelism, �ner branhing time equivalenesshould not lead to di�erent results later on.De�nition 2.12 Let N = (S, O, U, F, M0) be a net, σ ∈ O∗ and X ⊆ O.
<σ, X> is a failure pair of N i�

∃M1. M0
σ

=⇒ M1 ∧ M1 X
τ

−→ ∧∀t ∈ X. M1 X

{t}
−→ .We de�ne F (N) := {<σ, X> | <σ, X> is a failure pair of N}.De�nition 2.13Two nets N and N ′ are failures equivalent, N ≃F N ′, i� F (N) = F (N ′).The following lemma might seem obvious, but it is nonetheless important, as many of thelater proofs depend on it. 7



2 Basi NotionsLemma 2.1 Let N = (S, O, ∅, F, M0) be a net (without silent transitions) and M ⊆ S.If M
σ

=⇒ M1 ∧ M
σ

=⇒ M2 then M1 = M2.Proof Let t ∈ O.
M

{t}
=⇒ M ′

1 ⇔ M
{t}
−→ M ′

1 and M
{t}
−→ M ′

1 ⇒ M ′
1 = (M \ •t) ∪ t•.Hene M

{t}
=⇒ M ′

1 ∧M
{t}
=⇒ M ′

2 ⇒ M ′
1 = M ′

2. The result follows for a trae σ by indutionon the length of σ. �A net N = (S, O, U, F, M0) with silent transitions is alled divergene free i� ∀M1 ∈ [M0〉
∃n ∈ N ∀M2, . . . , Mn ⊆ S. (M1

τ
−→ M2

τ
−→ · · ·

τ
−→ Mn ⇒ Mn X

τ
−→).

8



3 Fully Symmetri AsynhronyTo examine the di�erene between synhronous and asynhronous ommuniation, we willgive di�erent possible de�nitions of how asynhronous ommuniation an be modelledin Petri nets. A simple and intuitive method to do this is to insert invisible transitionsbetween visible ones and their preplaes. This simulates that it may take time to removea token.De�nition 3.1 Let N = (S, O, ∅, F, M0) be a net.The fully symmetrially asynhronous implementation of N is de�ned as the netFSI(N) := (S ∪ Sτ , O, U ′, F ′, M0) with
Sτ := {st | t ∈ O, s ∈ •t} ,
U ′ := {ts | t ∈ O, s ∈ •t} and
F ′ := F ∩ (O × S)

∪ {(s, ts) | t ∈ O, s ∈ •t}

∪ {(ts, st) | t ∈ O, s ∈ •t}

∪ {(st, t) | t ∈ O, s ∈ •t} .We will use the abbreviations ◦x := {y | (y, x) ∈ F ′} and x◦ := {y | (x, y) ∈ F ′} insteadof •x or x• when making assertions about the �ow relation of an implementation.To understand the behaviour of the implementation, we �rst desribe the struture ofthe reahable markings therein. Whenever the implementation enables some transition,�rst some silent transitions must �re, thereby moving tokens from the original plaes ontothe newly introdued bu�ering plaes. To undo those silent transitions and get bak the
N :

a b

τ

a

τ

b

FSI(N) :

Figure 3.1: A net whih is not failures equivalent to its fully symmetrially asynhronousimplementation, N /∈ FSA(B), N ∈ SA(B) 9



3 Fully Symmetri Asynhronyoriginal marking we de�ne a funtion whih maps markings of the implementation ontomarkings of the original net.De�nition 3.2 Let N = (S, O, ∅, F, M0) be a net, let FSI(N) = (S∪Sτ , O, U ′, F ′, M0).Let τ← : S ∪ Sτ → S be the funtion de�ned by
τ←(p) :=







s i� p = st with st ∈ Sτ , s ∈ S, t ∈ O

p otherwise (p = s ∈ S)
.Furthermore, we de�ne a prediate whih is true on all markings of an implementationwhih an be reahed. Additionally we provide a distane funtion speifying how manysilent transitions an be �red in sequene.De�nition 3.3 Let N = (S, O, ∅, F, M0) be a net and FSI(N) = (S∪Sτ , O, U ′, F ′, M0).The prediate α ⊆ P(S ∪ Sτ ) is de�ned as α(M) :⇔ τ←(M) ∈ [M0〉N ∧ ∀p, q ∈ M.

τ←(p) 6= τ←(q). The funtion d : P(S ∪Sτ ) → N is de�ned as d(M) := |M ∩{s|s ∈ S,
s• 6= ∅}|.Using these two de�nitions, we an now proeed to prove basi properties of how theimplementation works.Lemma 3.1 Let N = (S, O, ∅, F, M0) be a net, FSI(N) = S ∪ Sτ , O, U ′, F ′, M0) and

M ⊆ S ∪ Sτ .(i) α(M0)(ii) α(M) ⇒ (d(M) > 0 ⇔ ∃M ′ ⊆ S ∪ Sτ . M
τ

−→FSI(N) M ′)(iii) M [G)FSI(N)M
′ ∧ α(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ←(M)

G∩O
−→N τ←(M ′) ∧

α(M ′)(iv) M
τ

−→FSI(N) M ′ ⇒ d(M) > d(M ′) ∧ τ←(M) = τ←(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗FSI(N) M ′Proof (i): By ∀s ∈ S. τ←(s) = s.(ii): �⇒�: d(M) > 0 ⇒ ∃p ∈ M∃t ∈ p•. By onstrution of FSI(N) then there exists a
M ′ with M [{tp}〉M

′ as α(M) and hene pt /∈ M .�⇐�: M
τ

−→FSI(N) M ′ ⇒ ∃tp ∈ U ′. M [{tp〉M
′. And ◦tp = {p} hene p ∈ M . Byonstrution of FSI(N) also ∃t ∈ O. p ∈ •t. Hene d(M) = |M ∩ {s|s ∈ S, s• 6= ∅}| ≥

|M ∩ {p}| > 0.(iii): Consider any t ∈ G∩O. Assume (M \ ◦t)∩ t◦ 6= ∅. Sine t◦ ⊆ S let p ∈ S suh that
p ∈ M ∩ t◦. p /∈ •t as by onstrution of FSI(N) also pt ∈ M and τ←(p) = p = τ←(pt)whih would violate α(M). It follows that (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not beontat free as τ←(M) ∈ [M0〉N by α(M).10



Consider any tp ∈ G∩U ′. As ◦tp = {p} and tp
◦ = {pt} we have that (M \ ◦t)∩ t◦ 6= ∅ ⇒

p ∈ M ∧ pt ∈ M but τ←(p) = p = τ←(pt) whih would violate α(M).
M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= ((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

{st | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}Therefore
τ←(M ′) = τ←((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

τ←({st | ts ∈ G ∩ U ′}) ∪ τ←({s | s ∈ t•, t ∈ G ∩ O})

= τ←((M \ {st | s ∈ •t, t ∈ G ∩ O}) \ {s | ts ∈ G ∩ U ′}) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}

= τ←(M \ {st | s ∈ •t, t ∈ G ∩ O})∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} .Take any t ∈ G ∩ O and any s ∈ •t. Then st ∈ M and α(M) ⇒ s /∈ M ∧ ∄u ∈ O.
u 6= t∧su ∈ M . Hene τ←(M \{st | s ∈ •t, t ∈ G∩O}) = τ←(M)\{s | s ∈ •t, t ∈ G∩O}.Furthermore ∀ts ∈ G ∩ U ′. ◦ts = {s} ∧ s ∈ M .Thus we �nd

τ←(M ′) = τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} ∪ {s | s ∈ t•, t ∈ G ∩ O} .and onlude that τ←(M)
G∩O
−→N τ←(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ←(p) 6= τ←(q). Assume the ontrary,i.e. there are p, q ∈ M ′ with p 6= q ∧ τ←(p) = τ←(q). Sine α(M) at least one of p and q� say p � must not be present in M . Assume p ∈ Sτ . Then there exist s ∈ S, t ∈ O suhthat st = p ∧ ts ∈ G and thereby τ←(p) = s. But then s ∈ ◦ts ⊆ M and by α(M) thereexists no u ∈ O with su ∈ M . Sine ts ∈ G ∧ s /∈ ts

◦ however s /∈ M ′. Furthermore byonstrution of FSI(N) ∀v ∈ O ∪ U ′. s ∈ τ←(v◦ ∩ Sτ ) ⇒ ◦v = s and suh a v ould not�re with ts in one step. Hene α(M ′) if p ∈ Sτ .If p ∈ S then τ←(p) = p and by onstrution of FSI(N) there exists a t ∈ G ∩ O with
p ∈ t◦ = t•. However α(M) ⇒ M ∈ [M0〉N and τ←(M)

G∩O
−→N τ←(M ′) ⇒ •t ⊆ τ←(M).Sine N is ontat free, then (t• \ •t)∩ τ←(M ′) = ∅. Therefore (τ←(q) = τ←(p) = p∧p ∈

t• ∧ q ∈ M ′) ⇒ τ←(q) ∈ •t. Furthermore by onstrution of FSI(N), ◦t ∩ M ′ = ∅ and itfollows that either q ∈ S ∧ q = p or q = pu for some u ∈ O ∧ u 6= t, whih would violate
α(M) sine ◦t ⊆ M ⇒ pt ∈ M and ∀v ∈ O ∪ U ′. pu ∈ v◦ ⇒ ◦v = {p}. Hene α(M ′) if
p ∈ S.(iv): Let ts ∈ U ′ suh that M [{ts}〉FSI(N)M

′. Then, by onstrution of FSI(N), s• 6= ∅.Furthermore ◦ts = {s}∧ ts
◦ = {st}. Hene M ′ = M \ {s}∪ {st} and d(M ′) = d(M)− 1∧

τ←(M ′) = τ←(M). 11



3 Fully Symmetri Asynhrony(v): Assume M [G〉NM ′. M ⊆ S by de�nition of N . Then, by onstrution of FSI(N),
M [{ts | t ∈ G, s ∈ •t}〉FSI(N)[{t | t ∈ G}〉FSI(N)M

′. The �rst part of that exeution an besplit into a sequene of singletons. �After those basi properties are established, we an use them to prove more intuitiveorollaries.Lemma 3.2 Let N be a net.FSI(N) is divergene free.Proof By Lemma 3.1 (i), (ii), (iii) and (iv). �Lemma 3.3 Let N = (S, O, ∅, F, M0) be a net.If N is ontat free, so is FSI(N).Proof By Lemma 3.1, (i) and (iii). �The following lemma states that the original net and the implementation an performthe same ations, provided that the �nal marking is an original marking. The orretnessof this depends on the fat that all newly introdued deadlok situations will have sometoken �stuk� in a bu�er plae.Lemma 3.4 Let N = (S, O, ∅, F, M0) be a net, FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0) and
M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1

G
−→N M2) ⇔ (M1

τ
−→

∗FSI(N)
G

−→FSI(N)
τ

−→
∗FSI(N) M2)(ii) (M1

σ
=⇒N M2) ⇔ (M1

σ
=⇒FSI(N) M2)Proof (i): �⇒�: By applying Lemma 3.1 (v). �⇐�: By using Lemma 3.1 (i), (v)and (iii) we �nd that α(M1) ∧ α(M2). The result then follows from Lemma 3.1 (iii), as

τ←(M1) = M1 and τ←(M2) = M2 sine both M1 ⊆ S ∧ M2 ⊆ S.(ii): By omplete indution on the length of σ. For σ = ε �⇒� is trivially true and �⇐� alsoholds beause ∀t ∈ U ′. t•∩Sτ 6= ∅ and therefore ∀M ′
2 ⊆ S. M1

ε
=⇒FSI(N) M ′

2 ⇒ M ′
2 = M1.Let t ∈ O. If (ii) holds for some σ then it also holds for σt due to (i) with G = {t}. �In addition to the above lemma it is also the ase that the implementation an alwayssimulate the original �optimally� in the sense that no super�uous transitions are �red andevery marking whih existed in the original trae is also reahed by the implementation.12



Lemma 3.5 Let N = (S, O, ∅, F, M0) be a net and let FSI(N) = (S∪Sτ , O, U ′, F ′, M0).Let M ⊆ S ∪ Sτ , σ ∈ O∗ suh that M0
σ

=⇒FSI(N) M and let MS := τ←(M).Then M0
σ

=⇒FSI(N) MS and ∄M ′
S ⊆ S. M ′

S 6= MS ∧ M0
σ

=⇒FSI(N) M ′
S.Proof By indution over the length of σ using Lemma 3.1 (i) and (iii) M0

σ
=⇒N τ←(M)wherefrom by using Lemma 3.1 (v) also M0

σ
=⇒FSI(N) τ←(M).Assume any other M ′ ⊆ S exists suh that M0

σ
=⇒FSI(N) M ′. Then M0

σ
=⇒N τ←(M ′).But by Lemma 2.1 then τ←(M ′) = τ←(M). Sine M ⊆ S ∧ M ′ ⊆ S then M = M ′. �All those lemmas above an be ombined to the already mentioned fat that the onlydi�erene in behaviour between the original net and its implementation is the introdutionof new deadloks, whih formally result in additional failures.Proposition 3.1 Let N = (S, O, ∅, F, M0) be a net.Then F (N) ⊆ F (FSI(N)).Proof Let FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0). Let <σ, X> ∈ F (N), t ∈ X and let

M1 ⊆ S suh that M0
σ

=⇒N M1.By using Lemma 3.1 (i), (iii) and (v) in an indution over σ, also M0
σ

=⇒FSI(N) M1.Using Lemma 3.1 (iv) and (ii) there exists a marking M ′
1 suh that M ′

1 X
τ

−→FSI(N) ∧
τ←(M ′

1) = τ←(M1) ∧ α(M ′
1).Consider a transition t ∈ X. Assume that t is not refused in M ′

1 by FSI(N), that is
∃M ′

2 ⊆ S ∪ Sτ . M ′
1[{t}〉FSI(N)M

′
2.Then by Lemma 3.1 (iii) and τ←(M ′

1) = M1 immediately M1
{t}
−→ τ←(M2) whih is aontradition. Therefore <σ, X> ∈ FSI(N). �Finally we de�ne the lass of nets whih are asynhronous, by testing whether if theywhere to be implemented asynhronously they would still funtion orretly. Atually wede�ne multiple lasses as di�erent equivalene relations lead to di�erent results.De�nition 3.4The lass of fully symmetrially asynhronous nets respeting linear time equivaleneis de�ned as FSA(L) := {N | FSI(N) ≃CPT N}.The lass of fully symmetrially asynhronous nets respeting branhing time equiva-lene is de�ned as FSA(B) := {N | FSI(N) ≃F N}.We also have obtained the following semi-strutural haraterisation of FSA(B). 13



3 Fully Symmetri AsynhronyDe�nition 3.5A net N = (S, O, ∅, F, M0) has a partially reahable on�it i� ∃t, u ∈ O. t 6= u ∧
•t ∩ •u 6= ∅ and ∃M ∈ [M0〉.

•t ⊆ M ∨ •u ⊆ M .The orretness of the haraterisation is proven below.Theorem 3.1A net N = (S, O, ∅, F, M0) is in FSA(B) i� N has no partially reahable on�it.Proof Let FSI(N) = (S ∪ Sτ , O, U ′, F ′, M0).�⇒�: Assume N has a partially reahable on�it. Then there exist t, u ∈ O, t 6= u,
σ ∈ O∗ and M ⊆ S suh that M0

σ
=⇒N M , •t ∩ •u 6= ∅ and •t ⊆ M ∨ •u ⊆ M . Withoutloss of generality assume that •t ⊆ M .For every <σ, X> ∈ F (N) we then know that t /∈ X by Lemma 2.1.However M0

σ
=⇒FSI(N) M by Lemma 3.4. Let p ∈ •t ∩ •u. Then, by onstrution ofFSI(N), there exists M1 ⊆ S∪Sτ with M [{up}〉M1, p /∈ M1 and sine t 6= u also pt /∈ M1.Now let M2 ⊆ S ∪ Sτ suh that M1

τ
−→

∗FSI(N) M2 ∧M2 X
τ

−→
∗FSI(N) (whih exists aordingto Lemma 3.2). Sine ∀v ∈ U ′. p /∈ v• ∧ (pt ∈ v• ⇒ p ∈ •v) we know that pt /∈ M2.But then M2 X

{t}
−→ and there exists a failure pair <σ, {t}> ∈ F (FSI(N)). We therebyknow that F (FSI(N)) 6= F (N).�⇐�: Assume N /∈ FSA(B). Then F (FSI(N)) 6= F (N) and F (FSI(N)) \F (N) 6= ∅ byProposition 3.1.Let <σ, X > ∈ F (FSI(N)) \ F (N). Then there exists an M1 ⊆ S ∪ Sτ suh that

M0
σ

=⇒FSI(N) M1 ∧ M1 X
τ

−→ ∧∀t ∈ X. M1 X

{t}
−→.By Lemma 3.5 then also M0

σ
=⇒FSI(N) τ←(M1) and by Lemma 3.4 M0

σ
=⇒N τ←(M1).Let t ∈ X suh that τ←(M1)

t
=⇒N (whih exists, otherwise <σ, X> ∈ F (N)). Let p ∈ •tsuh that pt /∈ M1 (suh pt exists, otherwise M1

{t}
−→FSI(N)).Sine τ←(M1)

t
=⇒N it follows that p ∈ τ←(M1). But p /∈ M1 otherwise M1

τ
−→FSI(N)whih would be a ontradition. Hene there must exists some u ∈ O with pu ∈ M1. Byonstrution of FSI(N) then p ∈ •u.But then t, u ∈ O ∧ •t ∩ •u 6= ∅∧ τ←(M1) ∈ [M0〉N ∧ •t ⊆ τ←(M1) and N has a partiallyreahable on�it. �From those results it is already visible that when onsidering branhing time equivalenesonly very simple nets are failures equivalent to their fully symmetrially asynhronousimplementation. An example whih already fails is shown in Figure 3.1.14



The net lass FSA(L) is substantially larger. However it oinides with some other lassof nets whih will be de�ned in the next setion. The proof of that oinidene mustnaturally go after the de�nitions of the other net lass and is ontained in the nextsetion.
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4 Symmetri AsynhronySine we are interested in more substantial results regarding branhing time equivalenes,we hange our de�nition somewhat and only insert invisible transitions wherever a tran-sition has multiple preplaes, when the synhronous removal of tokens is really essential.De�nition 4.1 Let N = (S, O, ∅, F, M0) be a net. Let Ob = {t | t ∈ O, |•t| > 1}.The symmetrially asynhronous implementation of N is de�ned as the netSI(N) := (S ∪ Sτ , O, U ′, F ′, M0) with
Sτ := {st | t ∈ Ob, s ∈ •t} ,
U ′ := {ts | t ∈ Ob, s ∈ •t} and
F ′ := F ∩

(

(O × S) ∪ (S × (O \ Ob))
)

∪ {(s, ts) | t ∈ Ob, s ∈ •t}

∪ {(ts, st) | t ∈ Ob, s ∈ •t}

∪ {(st, t) | t ∈ Ob, s ∈ •t} .The e�et of this transformation an be seen in Figure 1.1. A disussion in what sense thisnew transformation is onsistent with intuition follows later, after the details are mademore lear.Similar to Setion 3, we use ◦x and x◦ if the �ow relation of the implementation isdesribed. As before we establish basi properties of our transformation whih will beuseful later on. To do so, we again wish to undo the e�et of extraneous τ -transitions.The funtion to do so is the same τ← de�ned earlier.It turns out that the basi priniples of Lemma Lemma 3.1 also holds for this modi�edversion of asynhronous implementation. However the invariant and distane funtionsneed slight modi�ation.De�nition 4.2 Let N = (S, O, ∅, F, M0) be a net and SI(N) = (S ∪ Sτ , O, U ′, F ′, M0).The prediate β ⊆ P(S ∪ Sτ ) is de�ned as β(M) :⇔ τ←(M) ∈ [M0〉N ∧ ∀p, q ∈ M.
τ←(p) 6= τ←(q). The funtion e : P(S∪Sτ ) → N is de�ned as e(M) := |M ∩{s | s ∈ S,
∃t ∈ s•. |•t| > 1}|.

16



Lemma 4.1 Let N = (S, O, ∅, F, M0) be a net, SI(N) = S ∪ Sτ , O, U ′, F ′, M0) and
M ⊆ S ∪ Sτ .(i) β(M0)(ii) β(M) ⇒ (e(M) > 0 ⇔ ∃M ′ ⊆ S ∪ Sτ . M

τ
−→SI(N) M ′)(iii) M [G)SI(N)M

′ ∧ β(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ←(M)
G∩O
−→N τ←(M ′) ∧

β(M ′)(iv) M
τ

−→SI(N) M ′ ⇒ e(M) > e(M ′) ∧ τ←(M) = τ←(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗SI(N) M ′Proof (i): By ∀s ∈ S. τ←(s) = s.(ii): �⇒�: e(M) > 0 ⇒ ∃p ∈ M∃t ∈ p•. |•t| > 1. By onstrution of SI(N) then thereexists a M ′ with M [{tp}〉M
′ as β(M) and hene pt /∈ M .�⇐�: M

τ
−→SI(N) M ′ ⇒ ∃tp ∈ U ′. M [{tp〉M

′. And ◦tp = {p} hene p ∈ M . Byonstrution of SI(N) also ∃t ∈ O. p ∈ •t∧|•t| > 1. Hene e(M) = |M ∩{s|s ∈ S, ∃t ∈ s•.
|•t| > 1}| ≥ |M ∩ {p}| > 0.(iii): Consider any t ∈ G ∩ O. Assume (M \ ◦t) ∩ t◦ 6= ∅. Sine t◦ ⊆ S let p ∈ S suhthat p ∈ (M \ ◦t) ∩ t◦.There are two ases:
|•t| = 1: If p ∈ •t also p ∈ ◦t wih would be a ontradition with p ∈ M \ ◦t. Otherwise
p /∈ •t and (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not be ontat free as τ←(M) ∈ [M0〉Nby β(M).
|•t| > 1: p /∈ •t as by onstrution of SI(N) also pt ∈ M and τ←(p) = p = τ←(pt) whihwould violate β(M). Hene (τ←(M) \ •t) ∩ t• ⊇ {p} and N would not be ontat free as
τ←(M) ∈ [M0〉N by β(M).Consider any tp ∈ G∩U ′. As ◦tp = {p} and tp

◦ = {pt} we have that (M \ ◦t)∩ t◦ 6= ∅ ⇒
p ∈ M ∧ pt ∈ M but τ←(p) = p = τ←(pt) whih would violate β(M).Let Ob := {t | t ∈ O, |•t| > 1} and Onb := {t | t ∈ O, |•t| = 1}.

M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= (M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb} ∪ {s | ts ∈ G ∩ U ′}))∪

{st | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} 17



4 Symmetri AsynhronyTherefore
τ←(M ′) = τ←(M \({st|s ∈ •t, t ∈ G ∩ Ob}∪{s|s ∈ •t, t ∈ G ∩ Onb}∪{s|ts ∈ G ∩ U ′})) ∪

τ←({st | ts ∈ G ∩ U ′}) ∪ τ←({s | s ∈ t•, t ∈ G ∩ O})

= τ←(M \({st|s ∈ •t, t ∈ G ∩ Ob}∪{s|s ∈ •t, t ∈ G ∩ Onb}∪{s|ts ∈ G ∩ U ′})) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O}

= τ←(M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb})) ∪

{s | ts ∈ G ∩ U ′} ∪ {s | s ∈ t•, t ∈ G ∩ O} .Take any t ∈ G∩Ob and any s ∈ •t. Then st ∈ M and β(M) ⇒ s /∈ M ∧∄u ∈ O. u 6= t∧
su ∈ M . Take any t ∈ G∩Onb and the s ∈ •t. Then s ∈ M and β(M) ⇒ ∄u ∈ O. su ∈ M .Hene

τ←(M \ ({st | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb}))

= τ←(M) \ ({s | s ∈ •t, t ∈ G ∩ Ob} ∪ {s | s ∈ •t, t ∈ G ∩ Onb})

= τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} .Furthermore ∀ts ∈ G ∩ U ′. ◦ts = {s} ∧ s ∈ M .Thus we �nd
τ←(M ′) = τ←(M) \ {s | s ∈ •t, t ∈ G ∩ O} ∪ {s | s ∈ t•, t ∈ G ∩ O} .and onlude that τ←(M)

G∩O
−→N τ←(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ←(p) 6= τ←(q). Assume the ontrary,i.e. there are p, q ∈ M ′ with p 6= q ∧ τ←(p) = τ←(q). Sine β(M) at least one of p and q� say p � must not be present in M . Assume p ∈ Sτ . Then there exist s ∈ S, t ∈ O suhthat st = p ∧ ts ∈ G and thereby τ←(p) = s. But then s ∈ ◦ts ⊆ M and by β(M) thereexists no u ∈ O with su ∈ M . Sine ts ∈ G ∧ s /∈ ts

◦ however s /∈ M ′. Furthermore byonstrution of SI(N) ∀v ∈ O ∪U ′. s ∈ τ←(v◦ ∩ Sτ ) ⇒ ◦v = s and suh a v ould not �rewith ts in one step. Hene β(M ′) if p ∈ Sτ .If p ∈ S then τ←(p) = p and by onstrution of SI(N) there exists a t ∈ G ∩ O with
p ∈ t◦ = t•. However β(M) ⇒ M ∈ [M0〉N and τ←(M)

G∩O
−→N τ←(M ′) ⇒ •t ⊆ τ←(M).Sine N is ontat free, then (t• \ •t) ∩ τ←(M ′) = ∅. Therefore (τ←(q) = τ←(p) = p ∧

p ∈ t• ∧ q ∈ M ′) ⇒ τ←(q) ∈ •t.If |•t| > 1 by onstrution of SI(N), ◦t ∩ M ′ = ∅ and it follows that either q ∈ S ∧ q = por q = pu for some u ∈ O∧u 6= t, whih would violate β(M) sine ◦t ⊆ M ⇒ pt ∈ M and
∀v ∈ O ∪ U ′. pu ∈ v◦ ⇒ ◦v = {p}. Hene β(M ′) if p ∈ S. Otherwise •t = {τ←(q)} = {p}and also ◦t = {p}. But p was assumed to be not in M .Hene β(M ′) if p ∈ S.18



(iv): Let ts ∈ U ′ suh that M [{ts}〉SI(N)M
′. Then, by onstrution of SI(N), t ∈ s• ∧

|•t| > 1. Furthermore ◦ts = {s} ∧ ts
◦ = {st}. It follows that M ′ = M \ {s} ∪ {st} and

e(M ′) = e(M) − 1 ∧ τ←(M ′) = τ←(M).(v): Assume M [G〉NM ′. M ⊆ S by de�nition of N . Let Ob := {t | t ∈ O, |•t| > 1}. Then,by onstrution of SI(N), M [{ts | t ∈ G ∩ Ob, s ∈ •t}〉SI(N)[{t | t ∈ G}〉SI(N)M
′. The �rstpart of that exeution an be split into a sequene of singletons. �As Lemma 4.1 is basially the same as Lemma 3.1 it should ome as no surprise that theorollaries also hold.Lemma 4.2 Let N be a net.SI(N) is divergene free.Proof By Lemma 4.1 (i), (ii), (iii) and (iv). �Lemma 4.3 Let N = (S, O, ∅, F, M0) be a net.If N is ontat free, so is SI(N).Proof By Lemma 4.1, (i) and (iii). �The following lemma shows that all behaviours of N an be simulated by SI(N) and vieversa for visible behaviours of SI(N). Note however that SI(N) might be able to deadlokin more ases than N . One typial ase is shown in Figure 4.1.Lemma 4.4 Let N = (S, O, ∅, F, M0) be a net, SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) and

M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1
G

−→N M2) ⇔ (M1
τ

−→
∗SI(N)

G
−→SI(N)

τ
−→

∗SI(N) M2)(ii) (M1
σ

=⇒N M2) ⇔ (M1
σ

=⇒SI(N) M2)Proof Completely parallel to Lemma 3.4, using Lemma 4.1 instead of Lemma 3.1. �Lemma 4.5 Let N = (S, O, ∅, F, M0) be a net and let SI(N) = (S ∪Sτ , O, U ′, F ′, M0).Let M ⊆ S ∪ Sτ , σ ∈ O∗ suh that M0
σ

=⇒SI(N) M and let MS := τ←(M).Then M0
σ

=⇒SI(N) MS and ∄M ′
S ⊆ S. M ′

S 6= MS ∧ M0
σ

=⇒SI(N) M ′
S.Proof Completely parallel to Lemma 3.5, using Lemma 4.1 instead of Lemma 3.1. �19



4 Symmetri Asynhrony
N :

a b

SI(N) :

ττ

a b

⇒

ττ

a bFigure 4.1: The implementation reahed a deadlok, whih was not possible before, hene
N /∈ SA(B). But N ∈ AA(H, B).Proposition 4.1 Let N = (S, O, ∅, F, M0) be a net and SI(N) = (S∪Sτ , O, U ′, F ′, M0).Then F (N) ⊆ F (SI(N)).Proof Completely parallel to Proposition 3.1, using Lemma 4.1 instead of Lemma 3.1.

�Similar as we did for interleaving behaviour in Lemma 4.4, we also relate the possibleproesses of a net to those of its implementation. Due to time onstraints the proofs andbasi properties annot be presented as elaborate as we did for the interleaving ase.Lemma 4.6 Let N = (S, O, ∅, F, M0) be a net, Nf = (Sf , Of , ∅, Ff , M0f) an ourrenenet and f : Sf ∪ Of → S ∪ O a funtion. Let SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) andSI(Nf) = (Sf ∪ Sτ
f , Of , U

′
f , F

′
f , M0f).Let SI(f) : Sf ∪ Sτ

f ∪ Of ∪ U ′f → S ∪ Sτ ∪ O ∪ U be the funtion de�ned bySI(f)(x) :=















st i� x = pu ∈ Sτ
f with s = f(p) and t = f(u)

ts i� x = up ∈ U ′f with s = f(p) and t = f(u)

f(x) otherwise .Then f is a proess of N i� SI(f) is a proess of SI(N).Proof �⇒�: Assume f is a proess of N . We show that SI(f) is a proess of SI(N).SI(f)(Sf) = f(Sf) ⊆ SSI(f)(Sτ
f ) = {st | pu ∈ Sτ

f , s = f(p), t = f(u)} ⊆ S ∪ SτSI(f)(Of) = f(Of) ⊆ OSI(f)(U ′f) = {ts | up ∈ U ′f , s = f(p), t = f(u)} ⊆ U ′SI(f)(M0f ) = f(M0f ) = M0We show that SI(f) is injetive over slies.20



Let C be a slie of SI(Nf), then τ←(C) is a slie of Nf by onstrution of SI(Nf). Let
x, y ∈ C suh that SI(f)(x) = SI(f)(y).If x ∈ Sf then by onstrution of SI(f) also y ∈ Sf , f(x) = SI(f)(x) = SI(f)(y) = f(y)and, sine f is injetive over slies, x = y.Else x ∈ Sτ

f and by onstrution of SI(f) also y ∈ Sτ
f . Therefore let pu = x, qv = y and

st = SI(f)(x) = SI(f)(y). Then f(u) = f(v) = t ∧ f(p) = f(q) = s and thereby p = q as
f is injetive over slies and p = τ←(pu)∧ q = τ←(qv). Yet u ∈ p• and v ∈ p• but |p•| = 1and hene u = v. Therefore pu = qv.It remains to be shown that SI(f) respets pre- and postsets of transitions.Let t ∈ Of ∪ U ′f .SI(f) respets the postset of t: If t ∈ Of , then SI(f)(t)• = f(t)• = f(t•) = SI(t)(t•) as
t• ⊆ Sf . Else t = up ∈ U ′f and SI(f)(t)• =

(

f(u)f(p)

)•
= {f(p)f(u)} = SI(f)({pu}) =SI(f)(t•).SI(f) respets the preset of t: t ∈ Of \ Ob

f or t ∈ Ob
f or t ∈ U ′f . If t ∈ Of \ Ob

f , then
•SI(f)(t) = •f(t) = f(•t) = SI(f)(•t) as •t ⊆ Sf . If t ∈ Ob

f then •SI(f)(t) = •f(t) =

{f(s)f(t) | (f(s), f(t)) ∈ F} = SI(f)(•t). If t = up ∈ U ′f then •SI(f)(t) = •
(

f(u)f(p)

)

=

{f(p)} = SI(f)({p}) = SI(f)(•t).�⇐�: Assume SI(f) is a proess of SI(N). We show that f is a proess of N .
f(Sf) = SI(f)(Sf) ⊆ S ∪ Sτ ∧ f(Sf) ⊆ S ∪ O hene f(Sf) ⊆ S

f(Of) = SI(f)(Of) ⊆ O

f(M0f ) = SI(f)(M0f) = M0We show that f is injetive over slies.Let C be a slie of Nf , then C is also a slie of SI(Nf) by onstrution of SI(Nf ). Let
x, y ∈ C suh that f(x) = f(y). Then also SI(f)(x) = SI(f)(y) sine x, y ∈ Sf . SineSI(f) is injetive over slies, x = y.It remains to be shown that f respets pre- and postsets of transitions.Let t ∈ Of .
f respets the postset of t: f(t•) = SI(f)(t•) = SI(f)(t)• = f(t)• as t• ⊆ Sf .
f respets the preset of t:Let Ob := {t ∈ O | 1 < |•t|} and Ob

f := {t ∈ Of | 1 < |•t|}.If t /∈ Ob
f then f(•t) = SI(f)(•t) = •SI(f)(t) = •f(t) as {s | (s, t) ∈ F ′f} ⊆ Sf .Else t ∈ Ob

f . Let ⋆x = {y | (y, x) ∈ F ′f} and x⋆ = {y | (x, y) ∈ F ′f}. By onstrution ofSI(f), ∀v ∈ Ob. •v = ◦◦◦v, ∀u ∈ Ob
f .
•u = ⋆⋆⋆u and similarly for the postsets. Sine SI(f)is a proess, ∀u ∈ Ob

f . SI(f)(⋆u) = ◦SI(f)(u) and similarly for the postset. 21



4 Symmetri AsynhronyThereby
f(•t) = SI(f)(•t) = SI(f)(⋆⋆⋆t) = ◦SI(f)(⋆⋆t)) = ◦SI(f)({u ∈ Of ∪ U ′f | u⋆ ∩ ⋆t 6= ∅}) .By onstrution of SI(N), there exists exatly one u ∈ Of ∪ U ′f for eah pt ∈ ⋆t suhthat pt ∈ u⋆, namely u = tp. Furthermore there exists exatly one v ∈ O ∪ U ′ withSI(f)(pt) ∈ v◦, namely v = f(t)f(p) = SI(f)(u). Hene ∀pt ∈

⋆t. SI(f)(⋆pt) = ◦SI(f)(pt).Thereby we have ◦SI(f)(⋆⋆t) = ◦◦SI(f)(⋆t) = ◦◦◦SI(f)(t) = •SI(f)(t) = •f(t). �SI(f) will be used later with the same de�nition as in Lemma 4.6.Not only an every visible behaviour of a net be simulated by its implementation, but theonly di�erene between the sets of possible behaviours is the existene of new possibledeadloks in the transformed version of the net.Lemma 4.7 Let N = (S, O, ∅, F, M0) be a net.Then MVP(N) ⊆ MVP(SI(N)).Proof Let f be a maximal proess of N . Let Nf = (Sf , Of , ∅, Ff , M0f) be the our-rene net f is based on. Then SI(f) is a proess of SI(N) aording to Lemma 4.6 basedupon some ourrene net SI(Nf) = (Sf ∪ Sτ
f , Of , Uf , F

′
f , M0f).We show that SI(f) an be extended to a maximal proess of SI(N) without hangingthe visible pomset.Note that SI(Nf)

◦ = N◦f by onstrution of SI(Nf). Assume there exists a t ∈ Of suhthat SI(Nf )
◦ t

=⇒SI(N).If |•t| = 1 then •t ⊆ N◦f beause ∀u ∈ Uf . u• ⊆ Sτ
f but •t ⊆ Sf . Thus f would not bemaximal.In the ase of |•t| > 1, onsider a plae pt ∈

•t. Sine SI(Nf)
◦ ⊆ Sf and by onstrutionof SI(Nf) it follows that SI(Nf)

◦ τ
−→

∗ {tp}
−→

τ
−→

∗ {t}
−→. But •tp = {p}. As above ∀u ∈ Uf .

u• ⊆ Sτ
f . Hene the invisible transitions in the �rst τ

−→
∗ annot have marked p and thus

p ∈ SI(Nf)
◦. Repeating this argument for eah pt ∈

•t we �nd that {s | (s, t) ∈ F} ⊆ N◦f .Thus f would not be maximal.Therefore no visible transition an subsequently get enabled in SI(Nf ) if f is maximal.Furthermore ∀t ∈ Uf .
•t ⊆ Sf ∧ t• ⊆ Sτ

f and hene only �nitely many invisible transitionsare possible. Thus SI(f) an be extended to a maximal proess of SI(N) with V P (SI(f)) =
V P (f). �By observing whih nets preserve their behaviour if implemented asynhronously, we anlassify them as follows.22



De�nition 4.3(i) The lass of symmetrially asynhronous nets respeting linear time equivaleneis de�ned as SA(L) := {N | SI(N) ≃CPT N}.(ii) The lass of symmetrially asynhronous nets respeting branhing time equiva-lene is de�ned as SA(B) := {N | SI(N) ≃F N}.We return to the question of how large FSA(L) is. It turns out that FSA(L) = SA(L)as shown in the following lemma. We only prove one diretion, as the other is intuitivelylear. Requiring more asynhrony should not enlarge a lass of nets.Proposition 4.2 Let N be a net with SI(N) ≃CPT N .Then FSI(N) ≃CPT N .Proof Let SI(N) = (S ∪Sτ , O, U ′, F ′, M0) and FSI(N) = (S ∪Sτ ′′, O, U ′′, F ′′, M0). Let
g ∈ MP (SI(N)) with the assoiated ourrene net Ng = (Sg ∪Sτ

g , Og, Ug, Fg, M0g) where
s ∈ Sτ

g ⇔ g(s) ∈ Sτ .Then the net Nh = (Sg ∪ Sτ
h , Og, Uh, Fh, M0g) is an ourrene net and the funtion hbased upon it is a proess of FSI(N) if de�ned as follows:

Onb := {t | t ∈ Og, |{s | (s, t) ∈ Fg}| = 1}

Sτ
h := Sτ

g ∪ {st | (s, t) ∈ Fg, t ∈ Onb}

Uh := Ug ∪ {ts | (s, t) ∈ Fg, t ∈ Onb}

Fh := (Fg \ {(s, t) | (s, t) ∈ Fg, t ∈ Onb})

∪ {(s, ts), (ts, st), (st, t) | (s, t) ∈ Fg, t ∈ Onb}

h(x) :=















g(t)g(s) if x = ts ∈ Uh \ Ug

g(s)g(t) if x = st ∈ Sτ
h \ Sτ

g

g(x) otherwiseFirst we show that indeed Nh is an ourrene net: Sine (x, y) ∈ Fh ⇒ (x, y) ∈ F+
gwe have that ∀x, y ∈ Sg ∪ Sτ

h ∪ Oh ∪ Uh. (x, y) ∈ F+
h ⇒ (y, x) /∈ F+

h . Furthermore
∀s ∈ Sg ∪ Sτ

h . {t | (t, s) ∈ Fh} = {t | (t, s) ∈ Fg} and thus ∀s ∈ Sg ∪ Sτ
h . |•s| ≤ 1 and also

M0g = {s | •s = ∅}. Sine ∀s ∈ Sg. |s
•| = 1 also ∀s ∈ Sg ∪ Sτ

h . |s•| ≤ 1.Thus Nh is an ourrene net. We now ontinue by proving that h is indeed a proess ofFSI(N). 23



4 Symmetri Asynhrony
h(Sg ∪ Sτ

h) = g(Sg) ∪ {g(s)g(t) | (s, t) ∈ Fg, t ∈ Onb}

⊆ S ∪ Sτ ′′ ∪ {st | (s, t) ∈ F ′, |•t| > 1}

= S ∪ Sτ ′′

h(Og) = g(Og) ⊆ O

h(Uh) = g(Ug) ∪ {g(t)g(s) | (s, t) ∈ Fg, t ∈ Onb}

⊆ U ′′ ∪ {ts | (s, t) ∈ F ′, |•t| > 1}

= U ′′

h(M0g) = g(M0g) ⊆ M0Let C be a slie of Nh. Assume there exist p, q ∈ C, p 6= q with h(p) = h(q). If p = st ∈ Sτ
h ,let p′ = s otherwise let p′ = p and similarly for q′. Beause ∀s ∈ Sg. |s

•| ≤ 1 we havethat p′ 6= q′. Sine h(p) = h(q) also h(p′) = h(q′). But p′, q′ ∈ Sg and hene g(p′) = g(q′).Beause (p′, p) ∈ F ∗h and (q′, q) ∈ F ∗h we know that neither (p′, q′) ∈ F+
g nor (q′, p′) ∈ F+

g .Thus the set {p′, q′} an be extended to a slie of Ng over whih g would not be injetive.This would be a ontradition and therefore h must be injetive over slies.
h respets the postset of transitions: For every t ∈ Og ∪ Ug

h(t•) = h({s | (t, s) ∈ Fg}) = g({s | (t, s) ∈ Fg}) = {s | (g(t), s) ∈ F ′} = h(t)• ,whereas for every t ∈ Uh \ Ug, say t = up, we have
h(up

•) = h({pu}) = {g(p)g(u)} = g(u)g(p)
• = h(up)

• .
h respets the preset of transitions: For every t ∈ Ug ∪ Og \ Onb

h(•t) = h({s | (s, t) ∈ Fg}) = g({s | (s, t) ∈ Fg}) = {s | (s, g(t)) ∈ F ′} = •h(t) ,whereas for t ∈ Onb

h(•t) = h({st | (s, t) ∈ Fg}) = {g(s)g(t) | (s, t) ∈ Fg} = {st | (s, g(t)) ∈ F ′} = •h(t)and for t ∈ Uh \ Ug, say t = up, we have
h(•t) = h({u}) = {g(u)} = •g(u)g(p) = •h(t) .Additionally h an be extended to a maximal proess with the same visible pomset byexeuting remaining elements of U ′′ \ U ′.Conversely let h ∈ MP (FSI(N)). Let the assoiated ourrene net be Nh = (Sh ∪

Sτ
h, Oh, Uh, Fh, M0h).24



Then the net Ng = (Sh ∪ Sτ
g , Oh, Ug, Fg, M0h) is an ourrene net and the funtion gbased upon it is a maximal proess of SI(N) if de�ned as follows:

Unb := {t | t ∈ Uh, h(t) ∈ U ′′ \ U ′}

Sτ
g := Sτ

h \ {p | (u, p) ∈ Fh, u ∈ Unb}

Ug := Uh \ Unb

Fg :=
(

Fh\
(

{(s, u), (u, p) | s ∈ Sh, u ∈ Unb, p ∈ Sτ
h})∪

{(p, t) | (u, p) ∈ Fh, u ∈ Unb, p ∈ Sτ
h , t ∈ Oh}

))

∪ {(s, t) | {(s, u), (u, p), (p, t)} ⊆ Fh, s ∈ Sh, t ∈ Oh, u ∈ Unb, p ∈ Sτ
h}

g := h ↾ Sh ∪ Sτ
g ∪ Oh ∪ UgFrom the de�nition we get F+

g ⊆ F+
h , thus F+

g has no yles. Additionally Fg ∩ ((Og ∪
Ug) × (Sh ∪ Sτ

g )) = Fh ∩ ((Og ∪ Ug)(×Sh ∪ Sτ
g )) and therefore ∀s ∈ Sh ∪ Sτ

g . |•s| ≤ 1 and
M0h = {s|•s = ∅}. Assume that ∃s ∈ Sh ∪ Sτ

g . |{t | (s, t) ∈ Fg}| > 1. Clearly, thisan only our due to the last lause of Fg. However the other two lauses would haveremoved any post-transitions of s before. Hene ∀s ∈ Sh ∪ Sτ
g . |s•| ≤ 1.Therefore Ng is an ourrene net. We now prove that g is a maximal proess of SI(N).

g(Sh ∪ Sτ
g ) = h(Sh ∪ Sτ

g ) ⊆ S ∪ Sτ

g(Oh) = h(Oh) ⊆ O

g(Ug) = h(Uh) \ {ts | s ∈ S, t ∈ O, |•t| > 1} ⊆ U ′

g(M0h) = h(M0h) ⊆ M0Let C be a slie of Ng. C is then also a slie of Nh beause F+
h ∩(Sh∪Sτ

g ∪Oh∪Ug)
2 = F+

g .If p, q ∈ C, p 6= q, g(p) = g(q) then also h(p) = h(q) whih is a ontradition sine h isinjetive over slies. Hene g must be injetive over slies as well.
g respets the postset of transitions: For every t ∈ Oh ∪ Ug

g(t•) = h(t•) = h(t)• = g(t)• .
g respets the preset of transitions: If t ∈ Oh, |

•t| > 1 ∨ t ∈ Ug then
g(•t) = h(•t) = •h(t) = •g(t) .If t ∈ Oh, |

•t| ≤ 1 then
g(•t) =h({s | {(s, u), (u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ

h})

={s | (s, h(u)) ∈ F ′′, {(u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ
h}) . 25



4 Symmetri AsynhronyHowever every plae st ∈ Sτ ′′ has exatly one pre-transition, namely ts, and thus
{s | (s, h(u)) ∈ F ′′, {(u, p), (p, t)} ⊆ Fh, u ∈ Uh, p ∈ Sτ

h})

= {s | {(s, u), (u, h(p))} ⊆ F ′′, (p, t) ∈ Fh, u ∈ U ′′, p ∈ Sτ
h})

= {s | {(s, u), (u, p), (p, h(t))} ⊆ F ′′, u ∈ U ′′, p ∈ Sτ ′′})

= {s | (s, h(t)) ∈ F ′}) = •g(t) .To prove that g is maximal, assume N◦g would enable some transition t in SI(N). If t ∈ U ,then •t ⊆ S and the same t would also be enabled in FSI(N) by N◦h , hene t ∈ O. If
|•t| > 1 again t would be enabled in FSI(N) by N◦h . Let •t = {s} ⊆ N◦g ∩ S. But theneither s ∈ N◦h or st ∈ N◦h , and either ts or t would be enabled in FSI(N) by N◦h , whih isa ontradition. Hene g must be maximal. �The question remains however why FSA(B) is so small. The motivation for branhingtime equivalenes is the impliit assumption that the system under onsideration will laterbe embedded into an environment whih might prohibit exeution of some ations.If this embedment is modelled within the net itself however, the net will often easeto be symmetrially asynhronous with respet to linear time as the ommuniation ofthe net with the environment reates bakward branhing transitions. Unsurprisinglythis happens exatly if the net or the environment is not failures equivalent to its fullysymmetrially asynhronous implementation.This observation hints that our de�nition of symmetri asynhrony might be a bit o�although it gives nier results. If the ommuniation with the environment is assumed tobe synhronous however, the bakward branhing nature of the ommuniating transitionsposes no problems, and our onstrution of SI(N) desribe the situation.After the onnetion between FSA(B) and SA(B) have been leared up, we now give asemi-strutural haraterization of SA(B).De�nition 4.4A net N = (S, O, ∅, F, M0) has a partially reahable N i� ∃t, u ∈ O. t 6= u∧•t∩•u 6= ∅∧

|•t| > 1 ∧ ∃M ∈ [M0〉N . •t ⊆ M ∨ •u ⊆ M .Theorem 4.1A net N without silent transitions is in SA(B) i� N has no reahable N.Proof �⇒�: Suppose N = (S, O, ∅, F, M0) has a reahable N. We will show thatSI(N) 6≃F N . Sine N has a reahable N, ∃t, u ∈ O. t 6= u ∧ •t ∩ •u 6= ∅ ∧ |•t| > 1 ∧
∃M ∈ [M0〉N . •t ∈ M ∨ •u ∈ M .Let p ∈ •t ∩ •u and q ∈ •t with q 6= p. Then p ∈ M . Let SI(N) = (S ∪ Sτ , O, U ′, F ′, M0).By Lemma 4.4 there exists a σ ∈ O∗ with M0

σ
=⇒N M .There are two ases:26



Case 1, •u ⊆ M : We will show that <σ, {u}> ∈ F (SI(N)) but <σ, {u}> 6= F (N).Sine N has no silent transitions by Lemma 2.1 whenever M0
σ

=⇒N M ′ then M ′ = M .Sine M
{u}
−→N we have that <σ, {u}> /∈ F (N).Let M1 ⊆ S ∪ Sτ suh that M

{tp}
−→SI(N) M1 (suh an M1 exists by onstrution ofSI(N)). Note that p /∈ M1. SI(N) is divergene free by Lemma 4.2. So there exist

M2, M3, . . . , Mn ⊆ S ∪ Sτ suh that M1
τ

−→ M2
τ

−→ M3
τ

−→ · · ·
τ

−→ Mn ∧ Mn X
τ

−→ forsome n ≥ 1. There is no v ∈ U ′ with p ∈ v◦ by onstrution of SI(N). Hene p /∈ Mi for
1 ≤ i ≤ n.If |•u| = 1 then p ∈ ◦u. Otherwise there exists pu ∈ Sτ with pu ∈ ◦u. In this ase also
pu /∈ Mi for 1 ≤ i ≤ n by Lemma 4.1 (i) and (iii) as pt ∈ Mi for all 1 ≤ i ≤ n.In both ases Mn X

{u}
−→SI(N). Hene <σ, {u}> ∈ F (SI(N)).Case 2, •u * M : Then •t ⊆ M . Thus ∃q ∈ •u \ •t and |•u| > 1. This ase proeeds asase 1 with the roles of t and u exhanged.�⇐�: We will show that if SI(N) 6≃F N then SI(N) has a reahable N. Let SI(N) = (S ∪

Sτ , O, U ′, F ′, M0). If F (SI(N)) 6= F (N) then F (SI(N))\F (N) 6= ∅ by Proposition 4.1.Let <σ, X> ∈ F (SI(N)) \ F (N). Then M0
σ

=⇒N by Lemma 4.5 and Lemma 4.4. Let
u ∈ X suh that M0

σu
=⇒ (whih exists, otherwise <σ, X> ∈ F (N)). Let M1 ⊆ S ∪ Sτsuh that M0

σ
=⇒SI(N) M1 X

{u}
−→ ∧M1 X

τ
−→ (whih exists by Lemma 4.2).If |•u| = 1, let {p} = •u and we have p /∈ M1 (otherwise M1

{u}
−→SI(N)). On the otherhand, M0

σu
=⇒N and thus, aording to Lemma 4.5 and Lemma 4.4, p ∈ τ←(M1). Then,by onstrution of τ←, there must exist some tp ∈ U ′ with p ∈ •t (whih removed thetoken from p). By the onstrution of SI(N) then t ∈ O and, sine |•t| > 1, also t 6= u.Otherwise |•u| > 1. Let p ∈ •u suh that p /∈ M1 ∧ pu /∈ M1 (suh p exists, otherwise

M1
τ

−→SI(N) or M1
{u}
−→SI(N)). As above M0

σu
=⇒N and p ∈ τ←(M1). Then by onstrutionof τ←, either p ∈ M1, whih is not the ase, or there exists some pt ∈ M1 with t ∈ O∧p ∈ •t.But pu /∈ M1 and hene t 6= u.It follows in both ases that t, u ∈ O∧t 6= u∧•t∩•u ⊇ {p}∧|•t| > 1∧M ∈ [M0〉N∧•u ⊆ M .

�It turns out that our net lasses SA(B) and SA(L) are strongly related to the followingestablished ones [3℄.De�nition 4.5 Let N = (S, O, ∅, F, M0) be a net.(i) N is free hoie, N ∈ FC, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ |p•| = |q•| = 1.(ii) N is extended free hoie, N ∈ EFC, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ p• = q•.(iii) N is behaviourally free hoie, N ∈ BFC, i� ∀u, v ∈ O. •u ∩ •v 6= ∅ ⇒
(∀M1 ∈ [M0〉.

•u ⊆ M1 ⇔
•v ⊆ M1). 27



4 Symmetri Asynhrony
a bFigure 4.2: N ∈ SA(B), N /∈ EFC, N /∈ FC

a bFigure 4.3: N ∈ EFC, N /∈ SA(L), N /∈ SA(B), N /∈ FC, N /∈ AA(H, B), N ∈
AA(M, B), N ∈ AA(H, L), N ∈ AA(V, B), N ∈ ESPL, N /∈ SPL, N ∈
TSPLThe lass of free hoie nets is stritly smaller than that of symmetrially asynhronousnets respeting branhing time equivalene.Proposition 4.3

FC ( SA(B)Proof �⊆�: We prove that if N has a reahable N it is not in FC. Let t, u ∈ Osuh that •t ∩ •u 6= ∅ ∧ |•t| > 1. Let p ∈ •t ∩ •u and let q ∈ •t with p 6= q. Then
p, q ∈ S ∧ t ∈ p• ∩ q• ∧ |p•| ≥ 2. Hene N is not in FC.The inequality follows from the example in Figure 4.2, whih is not in FC and triviallyin SA(B) as no steps are possible. �The lass of free hoie nets is stritly smaller than the lass of extended free hoie nets.Proposition 4.4

FC ( EFCProof Follows from the de�nitions sine |p•| = |q•| = 1 ∧ p• ∩ q• 6= ∅ ⇒ p• = q• andthe ounterexample in Figure 4.3. [3℄ �The lass of symmetrially asynhronous nets respeting branhing time is stritly smallerthan the lass of symmetrially asynhronous nets respeting linear time.28



Proposition 4.5
SA(B) ( SA(L)Proof �⊆�:We show that N /∈ SA(L) ⇒ N /∈ SA(B).Let N = (S, O, ∅, F, M0) be a net and N /∈ SA(L). From Lemma 4.7 we already knowthat MVP(N) ⊆ MVP(SI(N)). Hene let f : (Sf ∪Of ∪Uf ) → (S ∪O∪U ′) be a maximalproess of SI(N) = (S ∪ Sτ , O, U ′, F ′, M0) with V P (f) ∈ MVP(SI(N)) \MVP(N) basedupon an ourrene net Nf = (Sf , Of , Uf , Ff , M0f).Using f , we will onstrut a failure of pair of SI(N) whih is not a failure pair of N .Consider the funtion g := f ∩ ((Sf ∪ Of) × (S ∪ O)) and the ourrene net de�ned by

Ng := (g←(S), g←(O), ∅, Fg, g
←(M0)), where

(x, y) ∈ Fg ⇔
(

(x, y) ∈ Ff ∨ ∃t ∈ Uf , s ∈ Sf , f(s) ∈ Sτ . {(x, t), (t, s), (s, y)} ⊆ Ff

) .We now show that g is a proess of N and V P (g) = V P (f).From the de�nition follows diretly that
g(g←(S)) ⊆ S

g(g←(O)) ⊆ O

g(∅) = ∅

g(g←(M0)) ⊆ M0 .Let p, q ∈ Sf suh that (p, q) ∈ F ∗f . Then by onstrution of SI(N) there exists a sequene
r0, r2, . . . , rn with ∀0 ≤ i ≤ n. f(ri) ∈ S of plaes suh that
∀1 ≤ i ≤ n. (∃t ∈ Of . {(ri−1, t), (t, ri)} ⊆ Ff )∨ (4.1)

(∃t ∈ Of , u ∈ Uf , s ∈ Sf . f(s) ∈ Sτ ∧ {(ri−1, u), (u, s), (s, t), (t, ri)} ⊆ Ff)and r0 = p∧ rn = q. In other words, there are just these two ways in whih two �original�plaes an be onneted in Nf .Let C be a slie of Ng and p, q ∈ C, p 6= q be two plaes therein, suh that g(p) = g(q).Then C is also a slie of Nf , sine f(C) ⊆ S and for every pair of plaes in C Equation 4.1holds. Additionally sine C ⊆ Sf , f(p) = g(p) = g(q) = f(q) whih is a ontradition.Hene g is injetive over slies. 29



4 Symmetri Asynhrony
g respets the post-plaes of a transition t ∈ g←(O):

g(t•) = g({s ∈ g←(S) | (t, s) ∈ Fg})

= g({s ∈ g←(S) | (t, s) ∈ Ff})

= f({s ∈ g←(S) | (t, s) ∈ Ff})

= {s ∈ S | (f(t), s) ∈ F}

= {s ∈ S | (g(t), s) ∈ F} = g(t)•

g respets the pre-plaes of a transition t ∈ g←(O):If |•t| = 1 then
g(•t) = g({s ∈ g←(S) | (s, t) ∈ Fg})

= f({s ∈ g←(S) | (s, t) ∈ Ff})

= {s ∈ S | (s, f(t)) ∈ F})

= {s ∈ S | (s, g(t)) ∈ F}) = •g(t) .If |•t| > 1 then
g(•t) = g({s ∈ g←(S) | (s, t) ∈ Fg})

= f({s ∈ g←(S) | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . {(s, u), (u, p), (p, t)} ⊆ Ff})

= {s ∈ S | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . (s, f(u)) ∈ F ′, {(u, p), (p, t)} ⊆ Ff} .However from the onstrution of SI(N), we have that for eah pt ∈ Sτ exists exatly one
v ∈ U with (v, pt) ∈ F ′, namely v = tp. Sine f respets the pre- and postonditions oftransitions we an ontinue with

{s ∈ S | ∃u ∈ Uf , p ∈ Sf , f(p) ∈ Sτ . (s, f(u)) ∈ F ′, {(u, p), (p, t)} ⊆ Ff}

= {s ∈ S | ∃u ∈ U, p ∈ Sf , f(p) ∈ Sτ . {(s, u), (u, f(p))} ⊆ F ′, (p, t) ∈ Ff}

= {s ∈ S | ∃u ∈ U, p ∈ Sτ . {(s, u), (u, p), (p, g(t))} ⊆ F ′}

= {s ∈ S | (s, g(t)) ∈ F} = •g(t) .That V P (g) = V P (f) follows from the de�nition of Fg and Equation 4.1.Thus we have that g is a proess of N and V P (g) = V P (f). But per assumption
V P (f) /∈ MVP(N) so g must not be maximal.Finally we use this property to derive the desired failure pair.Let t ∈ O suh that •t ⊆ N◦g . Suh a transitions exists, otherwise g would be maximal.A linearisation of V P (g) respeting the partial order leads to a trae σ. Additionally
V P (g) = V P (f), thus a linearisation of f will result in σ, too. But then ∃M1. M0

σ
=⇒SI(N)

M1 ∧ M1 X
τ

−→SI(N) ∧M1 X

{t}
−→SI(N) and M0

σ
=⇒N N◦g

{t}
−→N . There from we an onludethat <σ, {t}> ∈ F (SI(N)) \ F (N) and N /∈ SA(B).30



The inequality follows from the ounterexample in Figure 4.4, the symmetrially asyn-hronous implementation of whih has the additional failure <x, {a}> . �The lass of extended free hoie nets and the lass of symmetrially asynhronous netsrespeting branhing time equivalene are inomparable.Proposition 4.6
EFC * SA(B) ∧ SA(B) * EFCProof The proposition follows from the ounterexamples in Figure 4.2 and Figure 4.3.The latter ones symmetrially asynhronous implementation has the empty pomset as anadditional maximal visible pomset and is hene neither in SA(L) nor in SA(B). �The lass of extended free hoie nets and the lass of symmetrially asynhronous netsrespeting linear time equivalene are inomparable.Proposition 4.7
EFC * SA(L) ∧ SA(L) * EFCProof Again from the ounterexamples in Figure 4.2 and Figure 4.3. �The lass of extended free hoie nets is stritly smaller than the lass of behaviourallyfree hoie nets.Proposition 4.8
EFC ( BFCProof We prove N /∈ BFC ⇒ N /∈ EFC. Let N = (S, O, ∅, F, M0) be a net. Let

u, v ∈ O with •u ∩ •v 6= ∅. Let X := •u ∩ •v. Let M1 ∈ [M0〉 with ∃M2. M1[{u}〉M2 and
∄M3. M1[{v}〉M3. Then there is some p ∈ •v, p /∈ M1, p /∈ •u. However X is not emptyand therefore ∃q ∈ X. u ∈ q• ∧ v ∈ q•. But then q• ∩ p• ⊇ {u} 6= ∅ and p• 6= q• andtherefore N /∈ EFC. The inequality follows from Figure 4.5. [3℄ �The lass of behaviourally free hoie nets and the lass of symmetrially asynhronousnets respeting linear time equivalene are inomparable.Proposition 4.9

BFC * SA(L) ∧ SA(L) * BFC 31



4 Symmetri Asynhrony
x y

a bFigure 4.4: N ∈ SA(L), N /∈ BFC, N /∈ SA(B)

p q

a b cFigure 4.5: N ∈ BFC, N /∈ SA(L), N /∈ EFCProof The proposition follows from the ounterexamples in Figure 4.4 and Figure 4.5.The latter ones symmetrially asynhronous implementation has an additional maximalproess in whih bp �red one and c �res in�nitely often. �The lass of symmetrially asynhronous nets respeting branhing time equivalene isstritly smaller than the lass of behaviourally free hoie nets.Proposition 4.10
SA(B) ( BFCProof �⊆�: We show that N /∈ BFC ⇒ N /∈ SA(B).Let N = (S, O, ∅, F, M0) be a net with N /∈ BFC and let SI(N) = (S, O, U ′, F ′, M0).Let M1 ∈ [M0〉, u ∈ O, v ∈ O, s ∈ S suh that s ∈ •v ∩ •u ∧ •u ⊆ M1 ∧

•v * M1 (theseexist sine N /∈ BFC).Then there exists a trae σ suh that M0
σ

=⇒N M1. Together with •u ⊆ M1 it followsthat <σ, {u}> /∈ F (N).Using Lemma 4.4, M0
σ

=⇒SI(N) M1. Sine s ∈ •u ⊆ M1 but •v * M1 there exists p ∈ •vwith p 6= s. Then by onstrution of SI(N) there exists a transition vs ∈ U ′ (with s ∈ •vs,
s /∈ vs

•). Thereby ∃M2. M1
{vs}
−→ M2 with s /∈ M2. Furthermore ∀M3, M2

τ
−→

∗
M3. s /∈ M3due to the onstrution of SI(N). Sine additionally only �nitely many unobservabletransitions are possible, <σ, {u}> ∈ F (SI(N)).32
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Figure 4.6: Overview of the symmetrially asynhronous net lassesThe inequality follows from the ounterexample in Figure 4.5, the symmetrially asyn-hronous implementation of whih has the additional failure <ε, {a}> . �The lass of fully symmetrially asynhronous nets respeting branhing time is stritlysmaller than the lass of symmetrially asynhronous nets respeting branhing time.Proposition 4.11FSA(B) ( SA(B)Proof If a net has no partially reahable on�it it also has no partially reahable N.The inequality follows from the example in �gure Figure 3.1. �We now try to translate our results within Figure 4.6 into intuitive statements aboutthe general nature of asynhrony and synhrony and the impliations to the behavioursimplementable in an asynhronous system.Let's start at the top of the diagram, i.e. at FC. Free hoie nets are haraterizedstruturally, enforing that for every plae, a token therein an hoose freely (i.e. withoutinquiring about the existene of tokens in any other plaes) whih outgoing ar to take.This property makes it possible to implement the system asynhronously. In partiular,the omponent whih holds the information represented by a token an hoose arbitrarilywhen and into whih of multiple asynhronous output hannels to forward said informa-tion, without further knowledge about the rest of the system. As this deision is solely inthe disretion of the sending omponent and not based upon any knowledge of the restof the system, no synhronization with other omponents is neessary.The di�erene between SA(B) and FC is that in SA(B) the quanti�ation over the plaesis dropped, and the ondition omes out more straightforward as: Every token an hoosefreely whih outgoing ar to follow. Thus, SA(B) allows for non-free-hoie strutures aslong as these never reeive any tokens. 33



4 Symmetri AsynhronyThis also explains why BFC inludes SA(B). Sine SA(B) guarantees that problematistrutures never reeive any tokens, all transitions ontained in suh strutures are alwaysenabled together (atually they are never enabled).However SA(L) is not ontained in BFC as it additionally allows �temporary� deadlokswhih are guaranteed to ontinue after some further visible behaviour. These kind of laterto be resolved deadloks are forbidden both in branhing time semantis and behaviourallyfree hoie nets.The inomparability between the left and the right side of the diagram stems from theoneptual allowane of slight transformations of the net before evaluating whether it isfree hoie or not. Spei�ally in the ase of the net in Figure 4.3, a τ transition an�rst be introdued, whih ollets both tokens and then produes marks a single post-plae from whih the two original transitions get the token. Thus the hoie betweenthe two transitions is entralized in the newly introdued plae and thus free again. Wedon't allow any insertion of �helping� τ transitions, as it seems unlear to us how muhomputing power should be allowed in possibly larger networks of suh transitions. Thisbeomes espeially problemati if these networks somehow trak part of the global statusof the net inside themselves and thus make quite informed deisions about what outgoingtransition to enable.A similar di�erene exists between our results and those obtained in [10℄ by Hopkins.While we enfore a ertain distributed implementation of the original net, Hopkins allowsany implementation whih manages to exhibit the orret visible behaviour. Again, theimplementation might be quite elaborate and make informed deisions based upon globalknowledge of the net. While suh an implementation may be a sensible hoie in someases, it will most likely not be ompositional. Sine he allows far more transformationsthan we do and uses interleaving semantis, his net lasses inlude both BFC and SA(L).

34



5 Asymmetri AsynhronyAs seen in the previous setion, the lass of symmetrially asynhronous nets is quitesmall, and preludes the implementation of many real-world behaviours, like waiting forone of multiple input to beome readable, a Petri net representation of whih will alwaysinlude non free-hoie strutures.Therefore we propose a less strit de�nition of asynhrony suh that ations may dependsynhronously on a single predetermined ondition. In a hardware implementation theplaes whih earlier ould always forward a token into some invisible transitions must nowwait until they reeive an expliit token removal signal from their post-transitions.To this end we introdue a stati priority over the preplaes of eah transition. Everytransition �rst removes the token from the most prioritised preplae and then ontinuesalong dereasing priority. To formalize this behaviour in a Petri net we insert an invisibletransition for eah inoming ar of every transition. These invisible transitions are foredto exeute in sequene by newly introdued bu�er plaes between them. Finally at oneposition in this hain, the original visible transition is inserted.An example of this transformation is given in Figure 5.1.De�nition 5.1 Let N = (S, O, ∅, F, M0) be a net.Let g ⊂ (S × O) × (S × O) be a priority on F ∩ (S × O) suh that for eah t ∈ O
g ∩ (•t × {t}) is a total order ≤t

g over •t × {t}.We write mint
g and mint

g for the plae ontained in its minimal and maximal elementrespetively and (s + 1)t
g for the next plae greater than s out of •t aording to g.We de�ne a set of invisible transitions as X := {ts | t ∈ O, s ∈ •t}.Let h : X → X ∪O be an injetive funtion for whih ∀ts ∈ X. h(ts) 6= ts ⇒ h(ts) = tand O ⊆ h−1(X).The asymmetrially asynhronous implementation with respet to g and h of N isde�ned as AIg,h := (S ∪ Sτ , O, U ′, F ′, M0) with

Sτ := {st | t ∈ O, s ∈ •t, s 6= mint
g} ,

U ′ := h(X) \ O and
F ′ := {(s, h(ts)) | t ∈ O, s ∈ •t} ∪

{(pt, h(ts)) | t ∈ O, p = (s + 1)t
g, s ∈ •t, s 6= mint

g} ∪

{(h(ts), st) | t ∈ O, s ∈ •t, s 6= mint
g} ∪

{(h(ts), p) | t ∈ O, s = mint
g, p ∈ t•} . 35



5 Asymmetri Asynhrony
p q s

a b

⇒

p q s

τ

a b

τFigure 5.1: Transformation to asymmetri asynhrony, g suh that s <b
g p <b

g q and hsuh that h(ap) = a, h(bp) = b, h(bq) = bq, h(bs) = bsNaturally we want the implementation to behave similar to the original net. Contraryto the earlier results and due to the hoie of g and h however, it is now possible toreate implementations whih have additional traes, as it is done in Figure 5.6 by theimplementation skethed.Those problems an be irumvented if h is restrited suh that h(ts) = t ⇒ s = mint
g.Due to time onstraints we will onsider that restrition to be in plae for the mostremaining parts and write AIg(N) instead of AIg,h(N) where it is the ase. Additionallywe leave the linear time ase as onjetures.We now proeed parallel to the earlier setions, by removing all tokens on Sτ in a markingof the implementation. This time however multiple silent transitions need to be undonein sequene.De�nition 5.2 Let N = (S, O, ∅, F, M0) be a net and AIg(N) = (S∪Sτ , O, U ′, F ′, M0).Let τ⇐ : P(S ∪ Sτ ) → P(S) be the funtion de�ned by

τ⇐(X) := (X ∩ S) ∪
{

s
∣

∣

∣∃t ∈ O. s ∈ •t ∧ ∃pt ∈ X ∩ Sτ . (p, t) ≤t
g (s, t)

} .Given a marking of the implementation, τ⇐ will produe a marking whih must have beenreahable before the urrent situation ould ever have arisen.Note that the appliation of τ⇐ is only meaningful for markings where no two elementsof Sτ have originated from the same transition. However implementations of ontat freenets produe only markings whih ful�l this ondition, as we will show below.We �rst need to give the neessary invariant prediate and distane funtion.De�nition 5.3 Let N = (S, O, ∅, F, M0) be a net and AI(N) = (S ∪Sτ , O, U ′, F ′, M0).The prediate γ ⊆ P(S ∪ Sτ) is de�ned as γ(M) :⇔ τ⇐(M) ∈ [M0〉N ∧ ∀p, q ∈ M.
p 6= q ⇒ τ⇐({p}) ∩ τ⇐({q}) = ∅. The funtion f : P(S ∪ Sτ ) → N is de�ned as
f(M) := |M ∩ S|.We an now prove basi properties similar (but slightly weaker) to those in Lemma 3.1and Lemma 4.1.36



Lemma 5.1 Let N = (S, O, ∅, F, M0) be a net, AIg(N) = S ∪ Sτ , O, U ′, F ′, M0) and
M ⊆ S ∪ Sτ .(i) γ(M0)(ii) γ(M) ⇒ (∃M ′ ⊆ S ∪ Sτ . M

τ
−→AIg(N) M ′ ⇒ f(M) > 0)(iii) M [G)AIg(N)M

′ ∧ γ(M) ⇒ ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ ∧ τ⇐(M)
G∩O
−→N τ⇐(M ′) ∧

γ(M ′)(iv) M
τ

−→AIg(N) M ′ ⇒ f(M) > f(M ′) ∧ τ⇐(M) = τ⇐(M ′)(v) M [G〉NM ′ ⇒ M
τ

−→
∗ G
−→

τ
−→

∗AIg(N) M ′

Proof(i): τ⇐(M0) = M0 whih is trivially reahable. Furthermore ∀s ∈ S. τ⇐(M0) = {s} andhene ∀s, p ∈ M0. s, p ∈ S ∧ s 6= p ⇒ τ⇐({s}) ∩ τ⇐({p}) = {s} ∩ {p} = ∅.(ii): Assume γ(M) and there exists an M ′ ⊆ S ∪ Sτ suh that M [ts〉AIg(N)M
′ with some

t ∈ O, s ∈ S. By onstrution of AIg(N) then ◦ts ∩ S 6= ∅. Hene f(M) > 0.(iii): We �rst prove that ∀t ∈ G. (M \ ◦t) ∩ t◦ = ∅ and γ(M ′).Consider any u ∈ G ∩ U ′. Let t ∈ O, s ∈ S suh that ts = u. Then s ∈ ◦u ∧ s ∈ M and
u◦ = {st}. Then τ⇐({s}) ∩ τ⇐({st}) ⊇ {s}. Sine γ(M) and s ∈ M then st /∈ M . Hene
(M \ ◦u) ∩ u◦ = ∅.Consider any u ∈ G ∩ O. Let s be the single element of ◦u ∩ S. By onstrution ofAIg(N) and τ⇐, •u = τ⇐(◦u). Sine by γ(M) it follows that τ⇐(M) ∈ [M0〉N and Nis ontat free, we know that (τ⇐(M) \ •u) ∩ u• = ∅. Additionally u◦ = u• and hene
(τ⇐(M) \ •u) ∩ u◦ = ∅. Note that ◦u ∩ S = {s}. Sine γ(M) ∧ ◦u ⊆ M it follows that
M ∩ •u = {s}. Thereby (M \ ◦u) ∩ u◦ = ∅.We now want to prove that τ⇐(M)

G∩O
−→N τ⇐(M ′).

M ′ = (M \ {s | s ∈ ◦t, t ∈ G}) ∪ {s | s ∈ t◦, t ∈ G}

= (M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′} ∪

{p | t ∈ G ∩ O, p ∈ t•} 37



5 Asymmetri AsynhronyTherefore
τ⇐(M ′) = τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t

g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′} ∪

{p | t ∈ G ∩ O, p ∈ t•})

= τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g} ∪

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g})) ∪

{st | ts ∈ G ∩ U ′}) ∪

{p | t ∈ G ∩ O, p ∈ t•}

= τ⇐((M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}

{mint
g | t ∈ G ∩ O} ∪ {qt | t ∈ G ∩ O, |◦t| > 1, q = (mint

g + 1)t
g}))) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .Sine ∀t ∈ G ∩ O. mint
g ∈ M ∧ (|◦t| > 1 ⇒ ∃q ∈ •t. q = (mint

g + 1)t
g ∧ qt ∈ M) by γ(M)follows that ∄p ∈ M∃t ∈ G ∩ O. τ⇐({p}) ∩ τ⇐(◦t) 6= ∅ ∧ p 6= mint

g ∧ (|◦t| = 1 ∨ ∃q ∈
•t. q = (mint

g + 1)t
g ∧ p 6= tq). Hene

τ⇐(M ′) = (τ⇐(M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}))\

({mint
g | t ∈ G ∩ O} ∪ {q | t ∈ G ∩ O, |◦t| > 1, q ∈ •t, q 6= mint

g})) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•}

= (τ⇐(M \ ({s | ts ∈ G ∩ U ′} ∪ {qt | ts ∈ G ∩ U ′, |◦ts| > 1, q = (s + 1)t
g}))\

{q | t ∈ G ∩ O, q ∈ •t}) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .Sine ts ∈ G ∩ U ′ ⇒ (s, t) ≤t
g (s, t) and also ts ∈ G ∩ U ′ ∧ |◦ts| > 1 ∧ q = (s + 1)t

g ⇒
(s, t) ≤t

g (q, t) it follows that
τ⇐(M ′) = (τ⇐(M)\

{q | t ∈ G ∩ O, q ∈ •t}) ∪

{s | tp ∈ G ∩ U ′, s ∈ •t ∧ (p, t) ≤t
g (s, t)} ∪

{p | t ∈ G ∩ O, p ∈ t•} .By onstrution of AIg(N) and τ⇐ follows that tp ∈ G∩U ′ ⇒ {s|s ∈ •t∧(p, t) ≤t
g (s, t)} ⊆

τ⇐(M). Hene
τ⇐(M ′) = (τ⇐(M) \ {p | t ∈ G ∩ O, p ∈ •t}) ∪ {p | t ∈ G ∩ O, p ∈ t•} .38



Sine N is ontat free there an be no on�it on post-plaes of any t ∈ G∩O. By γ(M)follows that ∀t, u ∈ G ∩ O. •t ∩ •u = ∅. Hene τ⇐(M)
G∩O
−→N τ⇐(M ′).We still need to prove that ∀p, q ∈ M ′. p 6= q ⇒ τ⇐({p}) ∩ τ⇐({q}) = ∅. Assume theontrary, i.e. there are p, q ∈ M ′ with τ⇐({p}) ∩ τ⇐({q}) 6= ∅. Sine γ(M) at least oneof p and q � say p � must not be present in M .Assume p ∈ Sτ . Then there exists s ∈ S, t ∈ O suh that st = p ∧ ts ∈ G. If |◦ts| > 1let r = (s + 1)t

g. Otherwise let r be a new and unused element (this avoids trivial asedi�erentiations).From γ(M) and ◦ts ⊆ M follows p′ ∈ M ∧ τ⇐({p′}) ∩ τ⇐(◦ts) 6= ∅ ⇒ p′ = s ∨ p′ = rt.Additionally ts ∈ G and as s, rt /∈ ts
◦ then s, rt /∈ M ′. Hene any possibly on�iting qmust have been reated in the same step by some onurrent transition.Consider a v ∈ G ∩ U ′ with v 6= ts ∧ τ⇐(v◦) ∩ τ⇐(ts

◦) 6= ∅. By onstrution of AIg(N)and τ⇐ then τ⇐(◦v) ∩ τ⇐(◦ts) 6= ∅. But then ◦v ⊆ M violates γ(M).Consider a v ∈ G ∩ O with τ⇐(v◦) ∩ τ⇐(ts
◦) 6= ∅. Let p′ ∈ τ⇐(v◦) ∩ τ⇐(ts

◦). Then also
p′ ∈ v•. By onstrution of AIg(N) follows that τ⇐(ts

◦) = τ⇐(◦ts). It hene follows that
p′ ∈ τ⇐(◦ts) ⊆ τ⇐(M).By τ⇐(M)

G∩O
−→ τ⇐(M ′) it follows that •v ⊆ τ⇐(M). But τ⇐(M) is reahable in N andby ontat freeness of N follows that (τ⇐(M) \ •v) ∩ v• = ∅. Thereby p′ ∈ •v.If p′ = s either s ∈ ◦v and ts and v ould not �re in the same step, or ∃p′′ ∈ ◦v. p′′ 6= s ∧

s ∈ τ⇐({p′′}) ∩ τ⇐({s}) thereby violating γ(M)Otherwise p′ 6= s. But then ∃p′′ ∈ ◦v. p′′ 6= rt∧p′ ∈ τ⇐({p′′})∩τ⇐({rt}) thereby violating
γ(M).Assume p ∈ S. Then there exists t ∈ G ∩ O with p ∈ t◦ = t•. However γ(M) ⇒

M ∈ [M0〉N and τ⇐(M)
G∩O
−→N τ⇐(M ′) ⇒ •t ⊆ τ⇐(M). Sine N is ontat free, then

(t• \ •t)∩τ⇐(M ′) = ∅. Therefore from τ⇐({q})∩τ⇐({p}) = {p}∧p ∈ t•∧q ∈ M ′ follows
p ∈ •t. Sine p was assumed not be in in M and ◦t ⊆ M it follows that p /∈ ◦t.If q ∈ S then q = p thereby ontraditing the assumptions. Hene q ∈ Sτ and sine
q ∈ M ′ and t◦ ⊆ S we know that q /∈ t◦ and q was not produed by t.Now there exists the possibility that q was produed by some other onurrent transition.Assume �rst that this is not the ase and q ∈ M . Then ◦t ⊆ M ∧ q ∈ M ∧ q /∈ ◦t ∧
p ∈ τ⇐({q}) ∩ τ⇐(◦t) thereby violating γ(M).Assume now that there exists some v ∈ G with q ∈ v◦. Sine q /∈ S we know that
v ∈ U ′. By onstrution of AIg(N) then there exists some q′ ∈ ◦v with p ∈ τ⇐({q′}).Then ◦t ⊆ M ∧ q′ ∈ M ∧ q′ /∈ ◦t ∧ p ∈ τ⇐({q′}) ∩ τ⇐(◦t) thereby violating γ(M).(iv): Let ts ∈ U ′ suh that M [{ts}〉AIg(N)M

′. Then ◦ts ∩ S = {s}. As ts
◦ ∩ S = ∅ noelement of ts

◦ ontributes to f(M ′) and hene f(M ′) = f(M) − 1. 39



5 Asymmetri AsynhronyIf ◦ts ⊆ S then τ⇐(M ′) = τ⇐((M \◦ts)∪ts
◦) = τ⇐((M \{s})∪{st}) = τ⇐(M). Otherwiselet p ∈ S suh that pt ∈

◦ts.Then τ⇐(M ′) = τ⇐((M \ ◦ts) ∪ ts
◦) = τ⇐((M \ {s, pt}) ∪ {st}) = τ⇐(M).(v): Assume M [G〉NM ′. Order the elements of G arbitrarily suh that G = {t1, t2, . . . , tn}.We now onstrut a sequene M1, M2, . . . , Mn of markings suh that ◦t1 ⊆ M1,

◦t1 ∪
◦t2 ⊆

M2, . . . ,
◦t1 ∪ ◦t2 ∪ · · · ∪ ◦tn ⊆ Mn. To simplify notation, let M0 := M . To get from

Mi−1 to Mi with 1 ≤ i ≤ n onsider the sequene of plaes p1, p2, . . . , pm where every
pj = (pj+1+1)t

g and pm = mint
g. Then Mi−1[{tp1

}〉AIg(N)[{tp2
}〉AIg(N) · · · [{tpm−1

}〉AIg(N)Mi.In this fashion we arrive at Mn. Then Mn[G〉AIgM ′′. By onstrution of AIg(N) followsthat M ′′ = M ′. �We get the same set of orollaries as before.Lemma 5.2 Let N be a net.AIg(N) is divergene free.Proof By Lemma 5.1 (i), (ii), (iii) and (iv). �Lemma 5.3 Let N = (S, O, ∅, F, M0) be a net.If N is ontat free, so is AIg(N).Proof By Lemma 5.1, (i) and (iii). �Lemma 5.4 Let N = (S, O, ∅, F, M0) be a net, AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0) and
M1 ∈ [M0〉N , M2 ⊆ S.(i) (M1

G
−→N M2) ⇔ (M1

τ
−→

∗AIg(N)
G

−→AIg(N)
τ

−→
∗AIg(N) M2)(ii) (M1

σ
=⇒N M2) ⇔ (M1

σ
=⇒AIg(N) M2)Proof Completely parallel to Lemma 3.4 using Lemma 5.1 instead of Lemma 3.1. �Lemma 5.5 Let N = (S, O, ∅, F, M0) be a net and let AIg(N) = (S∪Sτ , O, U ′, F ′, M0)be an asymmetrially asynhronous implementation of N .Let M ⊆ S ∪ Sτ , σ ∈ O∗ suh that M0

σ
=⇒AIg(N) M and let MS := τ⇐(M).Then M0

σ
=⇒AIg(N) MS and ∄M ′

S ⊆ S. M ′
S 6= MS ∧ M0

σ
=⇒AIg(N) M ′

S.Proof Completely parallel to Lemma 3.5 using Lemma 5.1 instead of Lemma 3.1. �40



Proposition 5.1 Let N = (S, O, ∅, F, M0) be a net and let g and h be funtions suhthat AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0) is an asymmetri asynhronous implementation of
N and h(ts) = t ⇒ s = mint

g.Then F (N) ⊆ F (AIg(N)).Proof Completely analogous to Proposition 3.1 using Lemma 5.1 instead of Lemma 3.1.
�As before, we are interested in the relationship between nets and their possible implemen-tations. The de�nition of asymmetri asynhrony however allows di�erent implementa-tions for the same net. We de�ne a net to be asymmetrially asynhronous if any of thepossible implementations simulates the net su�iently.De�nition 5.4The lass of asymmetrially asynhronous nets respeting branhing time equivalene isde�ned as AA(M, B) := {N | ∃g, h. AIg,h(N) ≃F N}. Similarly the lass of asymmet-rially asynhronous nets respeting linear time equivalene is de�ned as AA(M, L) :=

{N | ∃g, h. AIg,h(N) ≃CPT N}.These lasses an be subdivided further by adding onstraints to the possible funtions h.De�nition 5.5The lass of front asymmetrially asynhronous nets respeting branhing time equiv-alene is de�ned as AA(V, B) := {N | ∃g, h. h(ts) = t ⇒ s = mint
g,AIg,h(N) ≃F N}.The lass of front asymmetrially asynhronous nets respeting linear time equivaleneis de�ned as AA(V, L) := {N | ∃g, h. h(ts) = t ⇒ s = mint

g,AIg,h(N) ≃CPT N}.De�nition 5.6The lass of tail asymmetrially asynhronous nets respeting branhing time equiva-lene is de�ned as AA(H, B) := {N | ∃g, h. h(ts) = t ⇒ s = mint
g,AIg,h(N) ≃F N}.The lass of tail asymmetrially asynhronous nets respeting linear time equivaleneis de�ned as AA(H, L) := {N | ∃g, h. h(ts) = t ⇒ s = mint

g,AIg,h(N) ≃CPT N}.We have hosen �V� and �H� from the German �vorne� and �hinten� as �F� for �front�would ollide unneessarily with the �F� of the failure equivalene.We kindly remind that most of the results in this setion only hold for AA(H, B), as werestrited ourselves to it.It would be nie to obtain a semi-strutural haraterization of AA(H, B) in the spirit ofTheorem 3.1. Unfortunately we did not �nd exat bounds, but obtained strutural upperand lower bounds for that net lass. 41



5 Asymmetri AsynhronyDe�nition 5.7A net N = (S, O, ∅, F, M0) has a left and right reahable M i� ∃t, u, v ∈ O∃p ∈
•t ∩ •u∃q ∈ •u ∩ •v. t 6= u ∧ u 6= v ∧ ∃M1, M2 ∈ [M0〉.

•t ∪ •u ⊆ M1 ∧
•v ∪ •u ⊆ M2A net N = (S, O, ∅, F, M0) has a left and right border reahable M i� ∃t, u, v ∈ O∃p ∈

•t ∩ •u∃q ∈ •u ∩ •v. t 6= u ∧ u 6= v ∧ ∃M1, M2 ∈ [M0〉.
•t ⊆ M1 ∧

•v ⊆ M2Theorem 5.1If a net N = (S, O, ∅, F, M0) is in AA(H, B) then N has no left and right reahableM.Proof Assume N has a left and right reahable M. Let t, u, v ∈ O and p, q ∈ S suhthat p ∈ •t∩•u∧q ∈ •u∩•v∧t 6= u∧u 6= v∧∃M1, M2 ∈ [M0〉.
•t∪•u ⊆ M1∧

•v∪•u ⊆ M2.The problemati transition will be u. Either (p, u) >u
g (q, u) or (q, u) >u

g (p, u). Dueto symmetry we an assume the former without loss of generality. We know that thereexists some σ ∈ O∗ suh that M0
σ

=⇒N M1 ∧
•t ⊆ M1. By Lemma 2.1 it follows that

∀<σ, X> ∈ F (N). t /∈ X.By Lemma 5.4 also M0
σ

=⇒AIg(N) M1. Let p1, p2, . . . , pn ∈ S suh that pi−1 = (pi +1)u
g for

2 ≤ i ≤ n and pn = p.Sine •u ⊆ M1 then there exists some M ′
1 with

M1[{up1
}〉AIg(N)[{up2

}〉AIg(N) · · · [{upn
}〉AIg(N)M

′
1 .Then pu ∈ M ′

1. By Lemma 5.1 (i) and (iii) also γ(M ′
1).But then by Lemma 5.1 (ii) and (iii) there exists an M ′′

1 with M ′
1

τ
−→

∗AIg(N) M ′′
1 ∧

M ′′
1 X

τ
−→AIg(N) ∧γ(M ′′

1 ). From onstrution of AIg(N) follows pu ∈ M ′
1 ⇒ ∃s ∈ •u.

(s, u) ≤u
g (p, u)∧su ∈ M ′′

1 . By onstrution of AIg(N) we know that p ∈ τ⇐(◦t). Togetherwith γ(M ′′
1 ) follows ◦t * M ′′

1 .But then <σ, {t}> ∈ F (AIg(N)). By the earlier observation however <σ, {t}> /∈ F (N).Hene N is not in AA(H, B). �Theorem 5.2If a net N = (S, O, ∅, F, M0) has no left and right border reahable M then N is inAA(H, B).Proof Assume N has no left and right border reahable M.Then ∀u ∈ O. (p, q ∈ •u ∧ (∃t ∈ p•. t 6= u ∧ (∃M1 ∈ [M0〉N . •t ⊆ M1)) ∧ (∃v ∈ q•.
v 6= u ∧ (∃M2 ∈ [M0〉N . •v ⊆ M2))) ⇒ p = q. Hene for every u ∈ O there an only beone plae in •u where on�it ould our.Now hoose g ⊆ (S × O) × (S × O) suh that for all u ∈ O, mint

g is that single plae.42
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Figure 5.2: N /∈ AA(H, B), N has a left and right border reahable M, N has no left andright reahable MLet AIg(N) = (S ∪ Sτ , O, U ′, F ′, M0).We prove that F (N) = F (AIg(N)). From Proposition 5.1 we have F (N) ⊆ F (AIg(N)).Therefore onsider a failure <σ, X> ∈ F (AIg(N)). We need to show that <σ, X> ∈
F (N).There exists some M1 ⊆ S ∪Sτ with M0

σ
=⇒AIg(N) M1 ∧M1 X

τ
−→ ∧∀t ∈ X. M1 X

{t}
−→. Thenby Lemma 5.5 M0

σ
=⇒AIg(N) τ⇐(M1) and by Lemma 5.4 also M0

σ
=⇒N τ⇐(M1).Now take any t ∈ X. Assume τ⇐(M1)

{t}
−→N . Then ◦t * M1 but •t ⊆ τ⇐(M1).By onstrution of τ⇐ then ∀s ∈ •t. s ∈ M1 ∨ ∃u ∈ O, p ∈ S. s ∈ τ⇐({up}) ∧ up ∈ M1.Sine M1 X

{t}
−→AIg(N) ∧M1 X

τ
−→AIg(N) there exists at least one s ∈ •t suh that s 6= M1 andthere exist u ∈ O and p ∈ S with s ∈ τ⇐({up}) and u 6= t.But then s ∈ •u∧ t ∈ s• ∧ t 6= u∧ τ⇐(M1) ∈ [M0〉N ∧ •t ⊆ τ⇐(M1). Sine s ∈ τ⇐{up} byonstrution of AIg(N) follows that s 6= minu

g . This however ontradits our onstrutionfor g given above. Hene τ⇐(M1) X

{t}
−→N .Applying this argument for all t ∈ X yields < σ, X > ∈ F (N) and thereby �nally

F (AIg(N)) ⊆ F (N). Hene N ∈ AA(H, B). �Indeed there are some nets in AA(H, B) whih have left and right border reahable Ms,but no left and right reahable M, see Figure 5.2.As before, the lasses de�ned in this setion are related to some known ones.De�nition 5.8 Let N = (S, O, ∅, F, M0) be a net.(i) N is simple in terms of transitions, N ∈ TSPL, i� ∀u, v ∈ O. (•u)•∩(•v)• 6= ∅ ⇒
•u ⊆ •v ∨ •v ⊆ •u.(ii) N is simple, N ∈ SPL, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ |p•| = 1 ∨ |q•| = 1. 43



5 Asymmetri Asynhrony
a bFigure 5.3: N ∈ SPL, N /∈ TSPL, N ∈ AA(H, B), N ∈ ESPL(iii) N is extended simple, N ∈ ESPL, i� ∀p, q ∈ S. p• ∩ q• 6= ∅ ⇒ p• ⊆ q• ∨ q• ⊆ p•.The lass of nets whih are simple in terms of transitions and simple nets are inomparable.Proposition 5.2

TSPL * SPL ∧ SPL * TSPLProof The proposition follows from the ounterexamples in Figure 4.3 and Figure 5.3.
�The lass of nets whih are simple in terms of transitions is stritly smaller than the lassof extended simple nets.Proposition 5.3

TSPL ( ESPLProof Let N = (S, O, ∅, F, M0) be a net. We prove that N /∈ ESPL ⇒ N /∈ TSPL.Let N /∈ ESPL. Then there exist p, q ∈ S and t, u, v ∈ O with t ∈ p• ∩ q•, u ∈ p• \ q•and v ∈ q• \ p•.But then (•u)• ∩ (•v)• ⊇ {t}, yet {p} ∈ •u \ •v and {q} ∈ •v \ •u. Hene N /∈ TSPL.The inequality follows from the ounterexample in Figure 5.3. �The lass of tail asymmetrially asynhronous nets respeting branhing time is inom-parable with the lass of nets whih are simple in terms of transitions.Proposition 5.4
AA(H, B) * TSPL ∧ TSPL * AA(H, B)Proof The proposition follows from the ounterexamples in Figure 5.3 and Figure 4.3.The tail asymmetrially asynhronous implementation of the latter will always have anew failure after the trae ε. If the left token is taken �rst either a or b will be disabled,but no visible ation ourred yet. The same holds for the other side. �44



a b cFigure 5.4: N ∈ AA(H, B), N /∈ ESPLThe lass of simple nets is stritly smaller than the lass of extended simple nets.Proposition 5.5
SPL ( ESPLProof Let N = (S, O, ∅, F, M0) be a net and N ∈ SPL. If p• ∩ q• 6= ∅ then either

|p•| = 1, p• ∩ q• = p• and p• ⊆ q• or vie versa.The inequality follows from the ounterexample in Figure 4.3. �The lass of simple nets is stritly smaller than the lass of tail asymmetrially asyn-hronous nets respeting branhing time equivalene.Proposition 5.6
SPL ( AA(H, B)Proof We prove that every M violates the onstraints of SPL.Assume N has a left and right reahable M. Let t, u, v ∈ O and let p, q ∈ S suh that

p ∈ •t ∩ •u ∧ q ∈ •u ∩ •v.Then u ∈ p• ∩ q• and |p•| > 1 ∧ |q•| > 1. Hene N is not in SPL.Therefore if N is in SPL it has no M. By Theorem 5.2, N is then in AA(H, B).The inequality follows from the example in �gure Figure 5.4. �The lass of tail asymmetrially asynhronous nets respeting branhing time equivaleneis inomparable to the lass of extended simple nets.Proposition 5.7
AA(H, B) * ESPL ∧ ESPL * AA(H, B)Proof The proposition follows from the ounterexamples in Figure 4.3 and Figure 5.4.The missing tokens in the latter example are intended. As no ation is possible there willnot be any additional implementation failures. �45



5 Asymmetri Asynhrony
x y

aFigure 5.5: N /∈ AA(V, B), N /∈ AA(V, L), N ∈ FC, N ∈ AA(H, B)The lass of tail asymmetrially asynhronous nets respeting branhing time equivaleneis stritly smaller than the lass of asymmetrially asynhronous nets. While the inlusionis obviously trivial, the inequality is more interesting.Proposition 5.8
AA(H, B) ( AA(M, B)Proof Follows from the de�nitions and the ounterexample in Figure 4.3.Every tail asymmetrially asynhronous implementation of the net will have one additionalfailure, either <ε, {a}> or <ε, {b}> . �Typial nets whih are in AA(M, B) but not in AA(H, B) are those with redundant plaeswhere it is important to make the hoie on the �rst plae taken and do it using a visibletransition, lest branhing time is violated. However there are less sinister uses of thefreedom given in the funtion h, see Figure 5.6 for an example.The following result is inluded merely for sake of ompleteness, as it is both trivial andrather uninteresting, sine the lass of front asymmetrially asynhronous nets respet-ing branhing time seems far too small. At least, it's stritly inluded in the lass ofasymmetrially asynhronous nets respeting branhing time.Proposition 5.9
AA(V, B) ( AA(M, B)Proof Follows from the de�nitions and the ounterexample in Figure 5.5. In the exam-ple, any front asymmetrially asynhronous implementation will have an additional trae,either xa or ya. �The same relation also holds within linear time semantis.
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Figure 5.6: N ∈ AA(M, L), N ∈ AA(M, B), N /∈ AA(H, L)Proposition 5.10
AA(V, L) ( AA(M, L)Proof Follows diretly from the de�nitions and the ounterexample in Figure 5.5. �However some strutures are implementable within front asymmetrially asynhronousnets respeting branhing time while not in the tail asymmetrially asynhronous variant.Proposition 5.11
AA(H, B) * AA(V, B) ∧ AA(V, B) * AA(H, B)Proof The proposition follows from the ounterexamples in Figure 4.3 and Figure 5.5.

�The lasses of tail asymmetrially asynhronous nets is stritly smaller than the lass ofasymmetrially asynhronous nets. This result ame quite as a surprise to us and reliesheavily upon the fat that we have hosen a behavioural equivalene instead of a notionof simulation whih also onsiders markings.Proposition 5.12
AA(H, L) ( AA(M, L)Proof AA(H, L) ⊆ AA(M, L) follows diretly from the de�nitions. 47



5 Asymmetri AsynhronyThe inequality follows from the example in �gure Figure 5.6. The dashed parts in thediagram are not neessary for the formal proof, but exist only to highlight the fat thatthere are suh nets where b an be enabled. We prove that no tail asymmetrially asyn-hronous implementation an be ompleted pomset trae equivalent to this net (withoutdashed parts).The original net has the ompleted traes zc, and xa. After z, a token resides on r and
b must not take that token away, sine c must stay enabled until �red. Therefore anyimplementation of b must �rst attempt to aquire a token from q. Furthermore after x atoken resides on q but b must not �re. Sine the token from q must be taken before theone from r, the transition doing so must be invisible. However the trae x must not bemaximal but extendible to xa. Sine the token on q an be taken away at any time bythe invisible transition whih is part of the implementation of b, the exeution of a mustnot depend on the existene of a token on q. Hene a must �rst take the token from pand do so using the visible transition. �The implementation outlined in the proof of Proposition 5.12 will also work with thedashed parts inluded, making the example slightly less ontrived. Nonetheless, the or-retness of the implementation depends ruially on the fat that no further ations getexeuted after a, as the implementation of a is not guaranteed to run to ompletion andthe plae s might not be marked after the trae xa.This result an be interpreted in two ways. On the one hand, our behavioural approahseems to produe odd results, on the other hand, it identi�es speial ases whih are stillimplementable by our methods, even though the general struture of them is not.Those ases whih are only implementable by in AA(M, L) are rare however, and we on-jeture that the lass of tail asymmetrially asynhronous nets is already stritly greaterthan the lass of extended simple nets.Conjeture 5.1

ESPL ( AA(H, L)Proof (Sketh) Let N = (S, O, ∅, F, M0) be a net and N ∈ ESPL.We hoose g suh that ∀t ∈ O, p, q ∈ •t. p• ⊆ q• ⇒ p ≤t
g q.Let AIg(N) = (S∪Sτ , O, U ′, F ′, M0). One needs to show thatMVP(N) = MVP(AIg(N)).

�We also onjeture that the lass of extended simple nets is stritly smaller than thelass of asymmetrially asynhronous nets respeting branhing time. First we show anie property of extended simple nets whih an then be used to onstrut the orretimplementation.48
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a b cFigure 5.7: N ∈ AA(H, L), N /∈ AA(M, B)Lemma 5.6 Let N = (S, O, ∅, F, M0) be a net with N ∈ ESPL. Let # ⊆ O × O bethe relation de�ned as t#u :⇔ •t ∩ •u 6= ∅.Let t ∈ O. Let X := {u | t#∗u}. If |X| > 1 then ∃s ∈ S. X ⊆ s•.Proof By indution over the size of a subset Y of X. Begin with Y := {t, u} with t#u.By de�nition of # there exists an s ∈ •t ∩ •u ⊆ S.Now assume Y ⊆ X ∧ |Y | > 1 and there exists an s ∈ S with Y ⊆ s•. Take a u ∈ Yand a v ∈ X \ Y with v#u. Then there exists a p ∈ •u ∩ •v by de�nition of #. But then
s• ∩ p• ⊇ {u}. Hene either s• ⊆ p• or p• ⊆ s• by the ondition of ESPL.In the �rst ase Y ∪ {v} ⊆ p•, in the latter ase Y ∪ {v} ⊆ s•. This an be ontinueduntil Y = X. �Conjeture 5.2

ESPL ( AA(M, B)Proof (Sketh) Let N = (S, O, ∅, F, M0) be a net and N ∈ ESPL.From Lemma 5.6 we get a single dominating preplae for eah set of on�iting transitions.We then de�ne g suh that mint
g is that singe plae.We would need to show that MVP(N) = MVP(AIg(N)). �We also onjeture that the lass of asymmetrially asynhronous nets respeting branh-ing time is stritly smaller than the lass of asymmetrially asynhronous nets respetinglinear time.
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5 Asymmetri AsynhronyConjeture 5.3
AA(M, B) ( AA(M, L)Similarly we onjeture that the lass of tail asymmetrially asynhronous nets respetingbranhing time is stritly smaller than the lass of tail asymmetrially asynhronous netsrespeting linear time.Conjeture 5.4
AA(H, B) ( AA(H, L)The lass of tail asymmetri asynhronous nets respeting linear equivalene is inompa-rable to the lass of asymmetri asynhronous nets respeting branhing time equivalene.Proposition 5.13
AA(H, L) * AA(M, B) ∧ AA(M, B) * AA(H, L)Proof By the ounterexamples in Figure 5.6 and Figure 5.7. �The lass of symmetrially asynhronous nets respeting branhing time equivalene isstritly smaller than the lass of asymmetrially asynhronous nets respeting branhingtime equivalene.Proposition 5.14SA(B) ( AA(B)Proof A net whih has no partially reahable N also has no left or right border reahableM.The inequality follows from the example in Figure 4.1. �Similarly to what we did in Setion 4, we now try to translate Figure 5.8 into an intuitivedesription.The lasses AA(V, B) and AA(V, L) on the right side are as weakly onneted as they aresine the assoiated implementations annot test whether all pre-plaes of a transitionare atually marked, thereby produing additional traes whih were not possible in theoriginal net. The resulting net lasses are therefore quite small and we didn't think itvery important to map their relation to the other lasses.50
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Figure 5.8: Overview of the asymmetrially asynhronous net lassesThe inequality between AA(H, B) and AA(M, B) stems from the ability of AA(M, B) todelay removal of tokens until the visible transition has �red. This usually only works whensaid tokens are guaranteed to stay where they are until the transition �red, a situationommonly enountered when multiple preplaes are ommon to two transitions. Suhnets lie not in AA(H, B) sine as soon as the �rst token on a shared preplae is removedusing a silent transition branhing time equivalenes are violated.No suh problem ours in linear time however, but unfortunately the power of hoosingfreely where to insert the visible transition an be used to implement orner ases as theone in Figure 5.6. We don't think there is any meaningful di�erene between AA(M, L)and AA(H, L) however.The di�erenes between AA(M, L) and AA(M, B) and between AA(H, L) and AA(H, B)are aused by the possibility of linear time respeting implementations to deadlok tem-porarily, i.e. a token seems stuk somewhere in the implementation of an transition, butanother part of the net ontinues and �nally resolves the deadlok. If the token whihseems stuk ould have been used by another transition in the original net, suh a tem-porary deadlok violates branhing time equivalenes, but not linear time equivalenes.Similar to the di�erene between FC and EFC there exists a di�erene between ESPLand SPL whih originates from the fat that ESPL allows small transformations to a netbefore testing whether it lies in SPL. This time however our semantially asynhronouslasses (aside fromAA(H, B)) are large enough to ontain the untransformed net struturediretly, hene the inlusion of ESPL in AA(H, L) and AA(M, B).
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6 Conlusions and Related WorkIn this paper we have shown how di�erent grades of asynhrony an be modelled in Petrinets. We de�ned three substantially di�erent families of semantially haraterized netlasses. In the �rst family of lasses (FSA) it is assumed that removal of tokens happensspontaneously but takes some time to omplete. In the seond family of lasses (SA),these assumptions are held up in priniple but transitions whih have only one preplaean remove tokens atomially from that single preplae. Finally in the third family oflasses (AA) the transitions an ontrol the removal of tokens in so far as tokens are onlyremoved in a stati sequene. We have proven a hain of true inlusions between thosethree families.Furthermore we have shown whih of the known Petri net lasses an be implementedusing whih grade of asynhrony. Spei�ally we found that free hoie nets orrespondto the seond family of net lasses and asymmetri hoie nets orrespond to the thirdfamily.Similar onsiderations have already be done in the ontext of proess algebras, mainly
π-alulus, loally synhronous systems and hardware implementations.In [11℄ Leslie Lamport outlines the basi problem of missing absolute time in a system ofommuniating proesses. He then derives a total ordering of system-wide events whihan then be used to solve synhronization problems. He does not detail the implementa-tion of the proesses involved in his systems and loal synhrony seems to be implied.In [12℄ Leslie Lamport onsiders arbitration in hardware and outlines various arbitration-free �wait/signal� registers. He notes that nondeterminism is thought to require arbitra-tion but no proof is known. He onludes that only marked graphs an be implementedusing these registers. Lamport then introdues �Or-Waiting�, i.e. waiting for any of twosignals, but has no model available to haraterize the resulting proesses.The used ommuniation primitives bear a striking similarity to our symmetrially asyn-hronous nets. While the Petri nets seem to imply nondeterministi hoie in the ase offorward branhing plaes, this need not be the ase. Sine the hoie in whih diretionthe token moves is made loally it ould as well be done deterministially, for examplealternating.In [16℄ Potop-Butuaru, Caillaud and Benveniste introdue a notion of �weak endohrony�whih haraterizes loally synhronous omponents whih an be ombined without om-pliations into a globally asynhronous system. They then ontinue to show that weakendohrony is preserved by omposition, whih they hope will make synthesis of weaklyendohronous systems easier.52



In [8℄ Frank S. de Boer and Catusia Palamidessi onsider various dialets of CSP with dif-fering degrees of asynhrony. In partiular, they onsider CSP without output guards andCSP without any ommuniation based guards. Furthermore they also onsider expliitlyasynhronous variants of CSP where output ations annot blok, i.e. asynhronous send-ing is assumed. Our results are related as they provide further detail between CSP∅ andCSPI . Interestingly our model seems to have no distintion parallel to the ACSP/CSPboundary.The one-to-one ommuniation assumption made in [8℄ when embedding CSPI into ACSPImight be related to the boundary between SA and AA as multiple input-guarded reeiverstogether with one sender an still form an M.In [15℄ Catusia Palamidessi shows that some kinds of synhronous ommuniation areimpossible in the asynhronous π-alulus, if ertain onstraints are plaed upon theenodings available. In partiular she wants enodings to be homomorphi wrt. parallelomposition. She then ontinues to show that symmetri eletoral systems annot beimplemented without mixed hoie, i.e. the ability to wait both for input and outputpossibilities at the same time.In [9℄ Dianele Gorla investigates di�erent sublanguages of the asynhronous π-aluluswhih are obtained by allowing di�erent features of ommuniation, namely arity, pattern-mathing and �fo-hannels. He then proeeds by detailing whih enodings between theselanguages are possible and whih are not. He also enfores enodings to be homomorphiwrt. parallel omposition, thereby exluding asymmetri enodings.In [14℄ Uwe Nestmann gives enodings between various forms of the asynhronous π-alulus. Due to the inherent asymmetry of input and output and beause of the useof atomi transmission of values, the π-alulus setting is non-trivially di�erent from outPetri Net based approah. Sine our model has stati onnetivity, it is espeially usefulfor low-level hardware designs.In [13℄ Mark Moir desribes a ommuniation sheme for a set of proesses on a multipro-essor system whih want to perform transational hanges to di�erent bloks of sharedmemory. By lever intermingling of rather low-level lok and higher level transationmanagement, the proposed sheme enables truly onurrent exeution of proesses whihonurrently read a shared blok while ensuring that no two transations whih modifythe same blok exeute in parallel.In [17℄ Wolfang Reisig introdues a lass of systems whih ommuniate using bu�ers andwhere the relative speeds of di�erent omponents are guaranteed to be irrelevant. Theresulting nets are simple nets. He then proeeds introduing a deision proedure for theproblem whether a marking exists whih makes the omplete system live.The strutural net lasses we ompare our onstrutions to where all taken from [4℄, whereEike Best and M.W. Shields introdue various transformations between free hoie nets,simple nets and extended variants thereof. They use �essential equivalene� to omparethe behaviour of di�erent nets, whih they only give informally. Moreover this equivalene53



6 Conlusions and Related Workis insensitive to divergene, whih is also relied upon in their transformations. They thenontinue to show some onditions under whih liveness an be guaranteed for some of thelasses.In [1℄, Wil van der Aalst, Ekkart Kindler and Jörg Desel introdue two extensions toextended simple nets, by allowing test ars to violate the ordering of plaes. This howeverassumes a kind of �atomiity� of test ars, whih we did not allow in this paper. Inpartiular we don't impliitly assume that a transition will not hange the state of a plaeit is onneted to by test ars, sine in ase of deadlok, the temporary removal of a tokenfrom suh a plae might not be temporary indeed.In [10℄, Rihard P. Hopkins introdues the onept of �distributable� Petri Nets, whereeah transitions and it's preplaes must reside on a single oneptual mahine, whilethe post-plaes may reside on another one. He then shows whih net strutures aredistributable if additional τ transitions are allowed to be inserted before the visible tran-sitions. The resulting net strutures an be understood to be the oarse limit of whatwe desribe in this paper. Our paper �lls in muh detail whih between his lasses andfree hoie nets. Consequently, his paper gives multiple theorem for non-distributabilitywhereas we give the positive results for smaller lasses.He uses interleaving semantis throughout his paper, and as he himself notes, the dis-tributed implementations of some of the example nets behave di�erently in true onur-reny semantis than the original nets, namely they add onurreny in some ases wheretwo transitions share the same preplae whih is also a post-plae of both by dupliatingsaid plae.Another relevant di�erene exists between his de�nitions and ours, namely his lassi�a-tions are all strutural, in the sense that distributability is not a dependent on the initialmarking. While he gives the (obvious) extension of distributability whih depends on theinitial marking, he unfortunately does not give any theorems about it.In [5℄ Lu Bougé onsiders the problem of implementing symmetri leader eletion in thesublanguages of CSP obtained by either allowing all guards, only input guards or onlyunguarded hoie. He �nds that the possibility of implementing it depends heavily onthe struture of the ommuniation graphs, while �truly� symmetri shemes are onlypossible in CSP with input and output guards. These results should be transferable intoour framework by relating the lass SA to CSP without guarded hoie, and the lass AAwith CSP with only input guarded hoie.Similarly in [6℄ Lu Bougé improves upon a distributed snapshot algorithm by Chandy andLamport, adding the possibility to take repeated snapshots and still using only boundedstorage. His algorithm ensures non-interferene of di�erent snapshot rounds by means ofsynhronous ommuniation. Indeed his implementation uses input and output guardsin the same hoie, leading to strutures outside of AA(H, L), and is therefore not easilyextendible to asynhronous systems.However there is still muh room for researh in the topi of asynhronous systems. We54



onjeture that, even for ready equivalene, it will not be possible to �nd an equivalentenoding of general synhronous systems into asynhrony, even if symmetry and homo-morphism wrt. parallel omposition are not required properties of the enoding (work inprogress).However, these restrition seems not to our in linear time semantis, and an enodingof general Petri nets into some lass of asynhronous nets should be possible, if theequivalene is su�iently oarse. The neessary lass of asynhronous nets seems tobe still a bit more synhronous than the three lasses introdued in this paper (work inprogress).Another interesting problem is to reate the onnetion from our Petri net based modelto real hardware. Most probably, the di�erent grades of asynhrony will result in di�erentperformane harateristis of their hardware implementations. It might be interesting toreate hardware implementations of the various transition types we introdued and benh-mark those, but even more interesting it seems would be to apply the knowledge obtainedthrough our models and try to make new more asynhronous hip designs, thereby im-proving performane.Furthermore, standard distributed algorithms ould be lassi�ed by their implementabilitywithin the various asynhronous models, thereby reating some ommon ground betweenthe various onepts of asynhrony ourring in di�erent papers.
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